Skip to main content

Advertisement

Log in

Dominant and Protective Role of the CYTH4 Primate-Specific GTTT-Repeat Longer Alleles Against Neurodegeneration

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Primate-specific genes and regulatory mechanisms could provide insight into human brain functioning and disease. In a genome-scale analysis of the entire protein-coding genes listed in the GeneCards database, we have recently reported human genes that contain “exceptionally long” short tandem repeats (STRs) in their core promoter, which may be of adaptive/selective evolutionary advantage in this species. The longest tetra-nucleotide repeat identified in a human gene core promoter belongs to the CYTH4 gene. This GTTT-repeat is specific to Hominidae and Old World monkeys, and the shortest allele of this repeat, (GTTT)6, is linked with neural dysfunction and type I bipolar disorder in human. In the present study, we sought a possibly broader role for the CYTH4 gene core promoter GTTT-repeat in neural functioning and investigated its allelic distribution in a total of 949 human subjects, consisting of two neurodegenerative disorders, multiple sclerosis (MS) (n = 272) and Alzheimer’s disease (AD) (n = 257), and controls (n = 420). The range of the alleles of this GTTT-repeat in the human sample studied was between 6- and 9-repeats. The shortest allele, (GTTT)6, was significantly in excess in the MS and AD patients in comparison with the controls (p < 0.004). The 6/6, 6/7, and 7/7 genotypes were in excess in the MS and AD patients, whereas the overall frequency of all other genotypes (consisting of at least one longer allele, i.e., 8- or 9-repeat) was higher in the controls (p < 0.005), indicating a dominant and protective effect for the longer alleles against neurodegeneration. This is the first indication of the involvement of a primate-specific STR in neurodegeneration in humans. We propose an adaptive evolutionary role for the expansion of the CYTH4 gene core promoter GTTT-repeat in the human brain, which is supported by a link between the shortest allele of this repeat with neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

AD:

Alzheimer’s disease

BP:

Bipolar disorder

CYTH4:

Cytohesin 4

MS:

Multiple sclerosis

STR:

Short tandem repeat

TSS:

Transcription start site

References

  • Airavaara M, Pletnikova O, Doyle ME, Zhang YE, Troncoso JC, Liu QR (2011) Identification of novel GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal gyrus of Alzheimer disease. J Biol Chem 286:45093–45102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders—text revised. APA, Washington, DC

    Google Scholar 

  • Andrioli LP, Vasisht V, Theodosopoulou E, Oberstein A, Small S (2002) Anterior repression of a Drosophila stripe enhancer requires three position-specific mechanisms. Development 129:4931–4940

    CAS  PubMed  Google Scholar 

  • Andrioli LP, Oberstein AL, Corado MS, Yu D, Small S (2004) Groucho-dependent repression by sloppy-paired 1 differentially positions anterior pair-rule stripes in the Drosophila embryo. Dev Biol 276:541–551

    Article  CAS  PubMed  Google Scholar 

  • Burki F, Kaessmann H (2004) Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Genet 36:1061–1063

    Article  CAS  PubMed  Google Scholar 

  • Cai JJ, Borenstein E, Chen R, Petrov DA (2009) Similarly strong purifying selection acts on human disease genes of all evolutionary ages. Genome Biol Evol 1:131–144

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao J-n, Agrawal A, Sharman E, Jia Z, Gupta S (2014) Alterations in gene array patterns in dendritic cells from aged humans. PLoS ONE 9:e106471

    Article  PubMed Central  PubMed  Google Scholar 

  • Cooper DN, Kehrer-Sawatzki H (2011) Exploring the potential relevance of human-specific genes to complex disease. Hum Genomics 5:99–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delarasse C, Della Gaspera B, Lu CW, Lachapelle F, Gelot A, Rodriguez D, Dautigny A, Genain C, Pham-Dinh D (2006) Complex alternative splicing of the myelin oligodendrocyte glycoprotein gene is unique to human and non-human primates. J Neurochem 98:1707–1717

    Article  CAS  PubMed  Google Scholar 

  • Esmaeilzadeh-Gharehdaghi E, Banan M, Farashi S et al (2011) Support for down-tuning of the calreticulin gene in the process of human evolution. Prog Neuropsychopharmacol Biol Psychiatry 35:1770–1773

    Article  CAS  PubMed  Google Scholar 

  • Farokhashtiani T, Mirabzadeh A, Olad Nabi M et al (2011) Reversion of the human calreticulin gene promoter to the ancestral type as a result of a novel psychosis-associated mutation. Prog Neuropsychopharmacol Biol Psychiatry 35:541–544

    Article  CAS  PubMed  Google Scholar 

  • Gombart AF (2009) The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Future Microbiol 4:1151–1165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huffaker SJ, Chen J, Nicodemus KK et al (2009) A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med 15:509–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen A, Gemayel R, Verstrepen KJ (2012) Unstable microsatellite repeats facilitate rapid evolution of coding and regulatory sequences. Genome Dyn 7:108–125

    CAS  PubMed  Google Scholar 

  • Kajiwara Y, Akram A, Katsel P et al (2009) FE65 binds Teashirt, inhibiting expression of the primate-specific caspase-4. PLoS ONE 4:e5071

    Article  PubMed Central  PubMed  Google Scholar 

  • Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22:253–259

    Article  CAS  PubMed  Google Scholar 

  • King DG (2012) Evolution of simple sequence repeats as mutable sites. Adv Exp Med Biol 769:10–25

    CAS  PubMed  Google Scholar 

  • Lin R, Charlesworth J, Stankovich J, Perreau VM, Brown MA, ANZgene Consortium, Taylor BV (2013) Identity-by-descent mapping to detect rare variants conferring susceptibility to multiple sclerosis. PLoS One 8(3):e56379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loe-Mie Y, Lepagnol-Bestel AM, Maussion G et al (2010) SMARCA2 and other genome-wide supported schizophrenia-associated genes: regulation by REST/NRSF, network organization and primate-specific evolution. Hum Mol Genet 19(14):2841–2857

    Article  CAS  PubMed  Google Scholar 

  • Miyaji K, Paul F, Shahrizaila N, Umapathi T, Yuki N (2014) Complement regulatory proteins (CD46, 55 and 59) expressed on Schwann cells: immune targets in demyelinating neuropathies? J Neuroimmunol 276(1-2):172–174

    Article  CAS  PubMed  Google Scholar 

  • Mohammadparast S, Bayat H, Biglarian A, Ohadi M (2014) Exceptional expansion and conservation of the PAXBP1 core promoter CT-repeat complex in primates. Am J Primatol 76:747–756

    Article  CAS  PubMed  Google Scholar 

  • Ohadi M, Mirabzadeh A, Esmaeilzadeh-Gharehdaghi E et al (2012a) Novel evidence of the involvement of calreticulin in major psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 37:276–281

    Article  CAS  PubMed  Google Scholar 

  • Ohadi M, Mohammadparast S, Darvish H (2012b) Evolutionary trend of exceptionally long human core promoter STRs. Gene 507:61–67

    Article  CAS  PubMed  Google Scholar 

  • Ohadi M, Valipour E, Ghadimi-Haddadan S et al (2015) Core promoter short tandem repeats as evolutionary switch codes for primate speciation. Am J Primatol 77:34–43

    Article  CAS  PubMed  Google Scholar 

  • Orre M, Kamphuis W, Osborn LM et al (2014) Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction. Neurobiol Aging 35:2746–2760

    Article  CAS  PubMed  Google Scholar 

  • Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302

    Article  PubMed Central  PubMed  Google Scholar 

  • Raj T, Shulman JM, Keenan BT et al (2012) Alzheimer disease susceptibility loci: evidence for a protein network under natural selection. Am J Hum Genet 90(4):720–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raj T, Kuchroo M, Replogle JM, Raychaudhuri S, Stranger BE, De Jager PL (2013) Common risk alleles for inflammatory diseases are targets of recent positive selection. Am J Hum Genet 92(4):517–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rezazadeh M, Gharesouran J, Mirabzadeh A, Khorram Khorshid HR, Biglarian A, Ohadi M (2014) A primate-specific functional GTTT-repeat in the core promoter of CYTH4 is linked to bipolar disorder in human. Prog Neuropsychopharmacol Biol Psychiatry 56C:161–167

    Google Scholar 

  • Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G (2009) Astrocyte-neuron interactions in neurological disorders. J Biol Phys 35:317–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh J, Tabunoki H (2013) Molecular network of chromatin immunoprecipitation followed by deep sequencing-based vitamin D receptor target genes. Mult Scler 19:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Valipour E, Kowsari A, Bayat H et al (2013) Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes. Gene 531:175–179

    Article  CAS  PubMed  Google Scholar 

  • White JH (2008) Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect Immun 76:3837–3843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zivković M, Starčević Čizmarević N, Lovrečić L, Klupka-Sarić I, Stanković A, Gašparović I et al (2014) The role of TPA I/D and PAI-1 4G/5G polymorphisms in multiple sclerosis. Dis Markers 2014:362708

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ohadi.

Additional information

M. Rezazadeh and J. Gharesouran contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezazadeh, M., Gharesouran, J., Movafagh, A. et al. Dominant and Protective Role of the CYTH4 Primate-Specific GTTT-Repeat Longer Alleles Against Neurodegeneration. J Mol Neurosci 56, 593–596 (2015). https://doi.org/10.1007/s12031-015-0542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0542-5

Keywords

Navigation