Skip to main content

Advertisement

Log in

Synergic Effects of EPI-NCSCs and OECs on the Donor Cells Migration, the Expression of Neurotrophic Factors, and Locomotor Recovery of Contused Spinal Cord of Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Cell-based therapy is a promising strategy for the repair of spinal cord injury (SCI), and the synergic effects of donor cells are emphasized in recent years. In this study, epidermal neural crest stem cells (EPI-NCSCs) and olfactory ensheathing cells (OECs) were transplanted into the contused spinal cord of rats separately or jointly at 1 week after injury. At 3 and 9 weeks posttransplantation, migration of the donor cells, expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) and functional recovery of the contused cord were determined by techniques of histopathology, quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry and Basso–Beattie–Bresnahan (BBB) score. The results showed that the migration and distribution of EPI-NCSCs in vivo were promoted by OECs at 3 weeks after transplantation, but they vanished at 9 weeks. The expression of BDNF and GDNF was significantly increased by co-transplantation at molecular and protein level. Although the expression of both factors in EPI-NCSCs- and OECs-injected group was lower than in co-injected group, it was higher than in control groups. Similarly, the best locomotor recovery of the contused cord was acquired from co-injected animals. As we know, this is the first time to study the synergic effects of EPI-NCSCs and OECs, and the data indicates that donor cells migration, expression of neurotrophic factors (NTFs), and recovery of motor function can be improved by EPI-NCSCs and OECs synergistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonic A, Sena ES, Lees JS et al (2013) Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS Biol 11(12):e1001738

    Article  PubMed Central  PubMed  Google Scholar 

  • Ban DX, Ning GZ, Feng SQ et al (2011) Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats. Regen Med 6(6):707–720

    Article  CAS  PubMed  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Ben-Zvi A, Ben-Gigi L, Yagil Z et al (2008a) Semaphorin3A regulates axon growth independently of growth cone repulsion via modulation of TrkA signaling. J Cell Signal 20(3):467–479

    Article  CAS  Google Scholar 

  • Ben-Zvi A, Manor O, Schachner M et al (2008b) The Semaphorin receptor PlexinA3 mediates neuronal apoptosis during dorsal root ganglia development. J Neurosci 28(47):12427–12432

    Article  CAS  PubMed  Google Scholar 

  • Cornejo M, Nambi D, Walheim C et al (2014) Erratum to: effect of NRG1, GDNF, EGF and NGF in the migration of a Schwann cell precursor line. Neurochem Res 39(5):985–986

    Article  CAS  Google Scholar 

  • Cui X, Chen L, Ren Y et al (2013) Genetic modification of mesenchymal stem cells in spinal cord injury repair strategies. Biosci Trends 7(5):202–208

    CAS  PubMed  Google Scholar 

  • Deng LX, Deng P, Ruan Y et al (2013) A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury. J Neurosci 33(13):5655–5667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fouad K, Bennett DJ, Vavrek R, Blesch A (2013) Long-term viral brain-derived neurotrophic factor delivery promotes spasticity in rats with a cervical spinal cord hemisection. Front Neurol 4:187

    Article  PubMed Central  PubMed  Google Scholar 

  • Gascon E, Vutskits L, Jenny B, Durbec P, Kiss JZ (2007) PSA-NCAM in postnatally generated immature neurons of the olfactory bulb: a crucial role in regulating p75 expression and cell survival. Development 134:1181–1190

    Article  CAS  PubMed  Google Scholar 

  • Gerin CG, Madueke IC, Perkins T et al (2011) Combination strategies for repair, plasticity, and regeneration using regulation of gene expression during the chronic phase after spinal cord injury. Synapse 65(12):1255–1281

    Article  CAS  PubMed  Google Scholar 

  • Gould TW, Oppenheim RW (2004) The function of neurotrophic factor receptors expressed by the developing adductor motor pool in vivo. J Neurosci 24(19):4668–4682

    Article  CAS  PubMed  Google Scholar 

  • Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG (2012) An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev 21(12):2222–2238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson SJ, Cummings BJ (2009) Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS ONE 4(6):e5871

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu YF, Zhang ZJ, Sieber-blum M (2006) An epidermal neural crest stem cell (EPI-NCSC) molecular signature. Cells 24:2692–2702

    CAS  Google Scholar 

  • Hwang DH, Kim BG, Kim EJ (2009) Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci 10:117

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10:381–391

    Article  CAS  PubMed  Google Scholar 

  • Lang BC, Zhang Z, Lv LY et al (2013) OECs transplantation results in neuropathic pain associated with BDNF regulating ERK activity in rats following cord hemisection. BMC Neurosci 14:80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li BC, Xu C, Zhang JY, Li Y, Duan ZX (2012) Differing Schwann cells and olfactory ensheathing cells behaviors, from interacting with astrocyte, produce similar improvements in contused rat spinal cord’s motor function. J Mol Neurosci 48(1):35–44

    Article  PubMed  Google Scholar 

  • Liu G, Rao Y (2003) Neuronal migration from the forebrain to the olfactory bulb requires a new attractant persistent in the olfactory bulb. J Neurosci 23(16):6651–6659

    CAS  PubMed  Google Scholar 

  • Li Y, Zhang L, Zhang JY, Liu Z, Duan ZX, Li BC (2013) Morphological study of Schwann cells remyelination in contused spinal cord of rats. Chin J Traumatol 16(4):225–229

    PubMed  Google Scholar 

  • Mayeur A, Duclos C, Honore A et al (2013) Potential of olfactory ensheathing cells from different sources for spinal cord repair. PLoS ONE 8(4):e62860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsuhara T, Takeda M, Yamaguchi S et al (2013) Simulated microgravity facilitates cell migration and neuroprotection after bone marrow stromal cell transplantation in spinal cord injury. Stem Cell Res Ther 4(2):35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller D, Djebbara-Hannas Z, Jourdain P et al (2000) Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc Natl Acad Sci U S A 97:4315–4320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Natarajan D, Marcos-Gutierrez C, Pachnis V, de Graaff E (2002) Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development 129:5151–5160

    CAS  PubMed  Google Scholar 

  • Nicolas G, Robin JMF, Nick DJ (2014) Cell therapy for spinal cord injuries: what is really going on? Neuroscientist 1:1–16

    Google Scholar 

  • Paratcha G, Ibanez CF, Ledda F (2006) GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol Cell Neurosci 31(3):505–514

    Article  CAS  PubMed  Google Scholar 

  • Paratcha G, Ledda F (2008) GDNF and GFRalpha: a versatile molecular complex for developing neurons. Trends Neurosci 31:384–391

    Article  CAS  PubMed  Google Scholar 

  • Paratcha G, Ledda F, Ibanez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113(7):867–879

    Article  CAS  PubMed  Google Scholar 

  • Pandamooz S, Naji M, Alinezhad F, Zarghami A, Pourghasem M (2013) The influence of cerebrospinal fluid on epidermal neural crest stem cells may pave the path for cell-based therapy. Stem Cell Res Ther 4(4):84

    Article  PubMed Central  PubMed  Google Scholar 

  • Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R (2012) Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic action. PLoS ONE 7(6):e39500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radtke C, Kocsis JD (2012) Peripheral nerve injuries and transplantation of olfactory ensheathing cells for axonal regeneration and remyelination: fact or fiction? Int J Mol Sci 13(10):12911–12924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rich KM (1992) Neuronal death after trophic factor deprivation. J Neurotrauma Suppl 1:S61–S69

    Google Scholar 

  • Rodriguez-Barrera R, Fernandez-Presas AM, Garcia E et al (2013) Immunization with a neural-derived peptide protects the spinal cord from apoptosis after traumatic injury. Biomed Res Int 2013:827517

    Article  PubMed Central  PubMed  Google Scholar 

  • Roloff F, Ziege S, Baumgartner W, Wewetzer K, Bicker G (2013) Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro. BMC Neurosci 14:141

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosenblum S, Smith TN, Wang N. et al. (2014) BDNF pre-treatment of human embryonic-derived neural stem cells improves cell survival and functional recovery after transplantation in hypoxic-ischemic stroke. Cell Transplant. Epub ahead of print

  • Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35

    Article  CAS  PubMed  Google Scholar 

  • Sadan O, Shemesh N, Barzilay R et al (2008) Migration of neurotrophic factors-secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging. Stem Cells 26(10):2542–2551

    Article  CAS  PubMed  Google Scholar 

  • Santos-Silva A, Fairless R, Frame MC et al (2007) FGF/heparin differentially regulates Schwann cell and olfactory ensheathing cell interactions with astrocytes: a role in astrocytosis. J Neurosci 27(27):7154–7167

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Lankford KL, Zemedkun M, Kocsis JD (2004) Identified olfactory ensheathing cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin. J Neurosci 24:8485–8493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla S, Chaturvedi RK, Seth K, Roy NS, Agrawal AK (2009) Enhanced survival and function of neural stem cells-derived dopaminergic neurons under influence of olfactory ensheathing cells in parkinsonian rat. J Neurochem 109(2):436–451

    Article  CAS  PubMed  Google Scholar 

  • Sieber-Blum M, Hu Y (2008) Mouse epidermal neural crest stem cell (EPI-NCSC) cultures. J. Vis. Exp. 9(15), pii:772

  • Sieber-Blum M, Schnell L, Grim M, Hu YF, Schneider R, Schwab ME (2006) Characterization of epidermal neural crest stem cell (EPI-NCSC) grafts in the lesioned spinal cord. Mol Cell Neurosci 32(1–2):67–81

    Article  CAS  PubMed  Google Scholar 

  • Vutskits L, Djebbara-Hannas Z, Zhang H et al (2001) PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur J Neurosci 13:1391–1402

    Article  CAS  PubMed  Google Scholar 

  • Wang GY, He XJ, Yuan PW, Li HP, Chang R (2011) Semaphorin 3A expression in spinal cord injured rats after olfactory ensheathing cell transplantation. Neural Regeneration Res 6(10):756–761

    CAS  Google Scholar 

  • Wang Y, Teng HL, Huang ZH (2012) Intrinsic migratory properties of cultured Schwann cells based on single-cell migration assay. PLoS ONE 7(12):e51824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woodhall E, West AK, Chuah MI (2001) Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res 88(1–2):203–213

    Article  CAS  PubMed  Google Scholar 

  • Wrathall JR, Li W, Hudson LD (1998) Myelin gene expression after experimental contusive spinal cord injury. J Neurosci 18(21):8780–8793

    CAS  PubMed  Google Scholar 

  • Yin DP, Liu L, Cao L (2013) Synergetic effects of ciliary neurotrophic factor and olfactory ensheathing cells on optic nerve reparation. Zhonghua Yan Ke Za Zhi 49(11):1020–1028

    CAS  PubMed  Google Scholar 

  • Zhao Z, Alam S, Oppenheim RW, Prevette DM, Evenson A, Parsadanian A (2004) Overexpression of glial cell line-derived neurotrophic factor in the CNS rescues motoneurons from programmed cell death and promotes their long-term survival following axotomy. Exp Neurol 190(2):356–372

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Chen LZ, Duan ZX, Li BC (2012) Culture and morphologic characteristics of epidermal neural crest stem cell isolated from GFP adult rat. Chongqing yi xue 41(33):3471–3475

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81371341), Special Funds for Major State Basic Research Project, China (2012CB518106), and Funds of the State Key Laboratory of Trauma, Burn and Combined Injury (SKLZZ201003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingcang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Z., Chen, H. et al. Synergic Effects of EPI-NCSCs and OECs on the Donor Cells Migration, the Expression of Neurotrophic Factors, and Locomotor Recovery of Contused Spinal Cord of Rats. J Mol Neurosci 55, 760–769 (2015). https://doi.org/10.1007/s12031-014-0416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0416-2

Keywords

Navigation