Skip to main content
Log in

Increased Expression of Protease-Activated Receptor 2 and 4 Within Dorsal Root Ganglia in a Rat Model of Bone Cancer Pain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In an effort to understand the underlying mechanisms of cancer-induced bone pain, we investigated the presence of two protease-activated receptors, protease-activated receptor 2 (PAR2), and protease-activated receptor 4 (PAR4), in dorsal root ganglia (DRGs) neurons in an animal model of bone cancer pain. Female Wistar rats were randomized into three groups: tumor-bearing animals killed after 14 days (D14) and tumor-bearing animals killed after 21 days (D21) group and a sham operation group. After establishment of the Walker 256 carcinoma bone cancer pain model, behavioral tests were carried out to determine both the spontaneous nocifensive behavior and the paw withdrawal threshold (PWT) of mechanical and thermal hyperalgesia in these rats. Subsequently, real-time RT-PCR, Western bolt, and immunofluorescence were used to determine the messenger RNA (mRNA) and protein expression of PAR2 and PAR4 in the ipsilateral lumbar 4–5 DRG neurons. Rats in the D21 treatment group displayed a significant increase in spontaneous nocifensive behavior scores compared with the sham group as well as a considerably decreased withdrawal threshold in mechanical allodynia and thermal stimulation. Compared to sham group, the relative mRNA and protein expression of PAR2 and PAR4 was significantly upregulated in the D14 group and D21 groups, concurrent with tumor growth and proliferation. In addition, we identified the co-expression of PAR2 and PAR4 in the DRG neurons. The upregulation of mRNA and protein levels as well as the co-localization of PAR2 and PAR4 in DRG neurons suggests their novel involvement in the development and maintenance of bone cancer pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alier KA, Endicott JA, Stemkowski PL, Cenac N, Cellars L, Chapman K, Andrade-Gordon P, Vergnolle N, Smith PA (2008) Intrathecal administration of proteinase-activated receptor-2 agonists produces hyperalgesia by exciting the cell bodies of primary sensory neurons. J Pharmacol Exp Ther 324(1):224–233

    Article  CAS  PubMed  Google Scholar 

  • Asfaha S, Cenac N, Houle S, Altier C, Papez MD, Nguyen C, Steinhoff M, Chapman K, Zamponi GW, Vergnolle N (2007) Protease-activated receptor-4: a novel mechanism of inflammatory pain modulation. Br J Pharmacol 150(2):176–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bao Y. Hou W. Hua B. 2013a. Protease-activated receptor 2 signalling pathways: a role in pain processing. Expert opinion on therapeutic targets

  • Bao Y. Hua B. Hou W. Shi Z. Li W. Li C. Chen C. Liu R. Qin Y. 2013b. Involvement of protease-activated receptor 2 in nociceptive behavior in a rat model of bone cancer. J Mol Neurosci, 52:566–576

  • Bruera E, Kim HN (2003) Cancer pain. JAMA-J Am Med Assoc 290(18):2476–2479

    Article  CAS  Google Scholar 

  • World Health Organization (1990) Cancer pain relief and palliative care. Report of a WHO expert committee. World Health Organ Tech Rep Ser 804:1–75

    Google Scholar 

  • Chen D, Wang Z, Zhang Z, Zhang R, Yu L (2013) Capsaicin up-regulates protease-activated receptor-4 mRNA and protein in primary cultured dorsal root ganglion neurons. Cell Mol Neurobiol 33(3):337–346

    Article  PubMed  Google Scholar 

  • Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249s

    Article  PubMed  Google Scholar 

  • Colvin L, Fallon M (2008) Challenges in cancer pain management–bone pain. Eur J Cancer 44(8):1083–1090

    Article  CAS  PubMed  Google Scholar 

  • Hollenberg MD, Compton SJ (2002) International union of pharmacology XXVIII. Proteinase-activated receptors. Pharmacol Rev 54(2):203–217

    Article  CAS  PubMed  Google Scholar 

  • Hollenberg MD, Saifeddine M, Sandhu S, Houle S, Vergnolle N (2004) Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo. Br J Pharmacol 143(4):443–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoogerwerf WA, Zou L, Shenoy M, Sun D, Micci MA, Lee-Hellmich H, Xiao SY, Winston JH, Pasricha PJ (2001) The proteinase-activated receptor 2 is involved in nociception. J Neurosci 21(22):9036–9042

    CAS  PubMed  Google Scholar 

  • Houle S, Papez MD, Ferazzini M, Hollenberg MD, Vergnolle N (2005) Neutrophils and the kallikrein-kinin system in proteinase-activated receptor 4-mediated inflammation in rodents. Br J Pharmacol 146(5):670–678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386(6624):502–506

    Article  CAS  PubMed  Google Scholar 

  • Kahn ML, Hammes SR, Botka C, Coughlin SR (1998) Gene and locus structure and chromosomal localization of the protease-activated receptor gene family. J Biol Chem 273(36):23290–23296

    Article  CAS  PubMed  Google Scholar 

  • Lam DK, Schmidt BL (2010) Serine proteases and protease-activated receptor 2-dependent allodynia: a novel cancer pain pathway. Pain 149(2):263–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lam DK, Dang D, Zhang J, Dolan JC, Schmidt BL (2012) Novel animal models of acute and chronic cancer pain: a pivotal role for PAR2. J Neurosci 32(41):14178–14183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lawson SN (2002) Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-fibres. Exp Physiol 87(2):239–244

    Article  CAS  PubMed  Google Scholar 

  • Liu S. Liu YP. Yue DM. Liu GJ. 2013. Protease-activated receptor 2 in dorsal root ganglion contributes to peripheral sensitization of bone cancer pain. Eur J Pain. doi: 10.1002/j.1532-2149.2013.00372.x.

  • Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, Keyser CP, Clohisy DR, Adams DJ, O’Leary P, Mantyh PW (2002) Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113(1):155–166

    Article  CAS  PubMed  Google Scholar 

  • Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP (2002) Molecular mechanisms of cancer pain. Nat Rev Cancer 2(3):201–209

    Article  CAS  PubMed  Google Scholar 

  • Mao-Ying QL, Zhao J, Dong ZQ, Wang J, Yu J, Yan MF, Zhang YQ, Wu GC, Wang YQ (2006) A rat model of bone cancer pain induced by intra-tibia inoculation of walker 256 mammary gland carcinoma cells. Biochem Biophys Res Commun 345(4):1292–1298

    Article  CAS  PubMed  Google Scholar 

  • McDougall JJ, Zhang C, Cellars L, Joubert E, Dixon CM, Vergnolle N (2009) Triggering of proteinase-activated receptor 4 leads to joint pain and inflammation in mice. Arthritis Rheum 60(3):728–737

    Article  CAS  PubMed  Google Scholar 

  • Medhurst SJ, Walker K, Bowes M, Kidd BL, Glatt M, Muller M, Hattenberger M, Vaxelaire J, O’Reilly T, Wotherspoon G, Winter J, Green J, Urban L (2002) A rat model of bone cancer pain. Pain 96(1–2):129–140

    Article  CAS  PubMed  Google Scholar 

  • Menendez L, Lastra A, Fresno MF, Llames S, Meana A, Hidalgo A, Baamonde A (2003) Initial thermal heat hypoalgesia and delayed hyperalgesia in a murine model of bone cancer pain. Brain Res 969(1–2):102–109

    Article  CAS  PubMed  Google Scholar 

  • Miao XR. Gao XF. Wu JX. Lu ZJ. Huang ZX. Li XQ. He C. Yu WF. 2010. Bilateral downregulation of Nav1.8 in dorsal root ganglia of rats with bone cancer pain induced by inoculation with Walker 256 breast tumor cells. BMC Cancer 10:216

  • Nystedt S, Emilsson K, Larsson AK, Strombeck B, Sundelin J (1995) Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Europ J Biochem 232(1):84–89

    Article  CAS  PubMed  Google Scholar 

  • Obata K, Yamanaka H, Fukuoka T, Yi D, Tokunaga A, Hashimoto N, Yoshikawa H, Noguchi K (2003) Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain 101(1–2):65–77

    Article  CAS  PubMed  Google Scholar 

  • Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84(2):579–621

    Article  CAS  PubMed  Google Scholar 

  • Q W. 2006. Combining the evidence from different drug trials. Edinburgh: University of Edinburgh

  • Russell FA, Veldhoen VE, Tchitchkan D, McDougall JJ (2010) Proteinase-activated receptor-4 (PAR4) activation leads to sensitization of rat joint primary afferents via a bradykinin B2 receptor-dependent mechanism. J Neurophysiol 103(1):155–163

    Article  CAS  PubMed  Google Scholar 

  • Russell FA, Zhan S, Dumas A, Lagarde S, Pouliot M, McDougall JJ (2011) The pronociceptive effect of proteinase-activated receptor-4 stimulation in rat knee joints is dependent on mast cell activation. Pain 152(2):354–360

    Article  CAS  PubMed  Google Scholar 

  • Sabri A, Guo J, Elouardighi H, Darrow AL, Andrade-Gordon P, Steinberg SF (2003) Mechanisms of protease-activated receptor-4 actions in cardiomyocytes role of src tyrosine kinase. J Biol Chem 278(13):11714–11720

    Article  CAS  PubMed  Google Scholar 

  • Vellani V, Kinsey AM, Prandini M, Hechtfischer SC, Reeh P, Magherini PC, Giacomoni C, McNaughton PA (2010) Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones. Mol Pain 6:61

    Article  PubMed Central  PubMed  Google Scholar 

  • Vergnolle N, Bunnett NW, Sharkey KA, Brussee V, Compton SJ, Grady EF, Cirino G, Gerard N, Basbaum AI, Andrade-Gordon P, Hollenberg MD, Wallace JL (2001) Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat Med 7(7):821–826

    Article  CAS  PubMed  Google Scholar 

  • Vergnolle N, Derian CK, D’Andrea MR, Steinhoff M, Andrade-Gordon P (2002) Characterization of thrombin-induced leukocyte rolling and adherence: a potential proinflammatory role for proteinase-activated receptor-4. J Immunol 169(3):1467–1473

    Article  CAS  PubMed  Google Scholar 

  • Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64(6):1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Chen D, Zhang Z, Zhang R, An S, Yu L (2013) Protease-activated receptor 4 activation increases the expression of calcitonin gene-related peptide mRNA and protein in dorsal root ganglion neurons. J Neurosci Res 91(12):1551–1562

    Article  CAS  PubMed  Google Scholar 

  • Zhu WJ, Yamanaka H, Obata K, Dai Y, Kobayashi K, Kozai T, Tokunaga A, Noguchi K (2005) Expression of mRNA for four subtypes of the proteinase-activated receptor in rat dorsal root ganglia. Brain Res 1041(2):205–211

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

Download references

Acknowledgments

The current work was partially supported by the National Natural Science Foundation Project of China (no. 81273718 and no. 81302961). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the paper.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Hou or Baojin Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Hou, W., Yang, L. et al. Increased Expression of Protease-Activated Receptor 2 and 4 Within Dorsal Root Ganglia in a Rat Model of Bone Cancer Pain. J Mol Neurosci 55, 706–714 (2015). https://doi.org/10.1007/s12031-014-0409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0409-1

Keywords

Navigation