Skip to main content

Advertisement

Log in

Sleep Fragmentation Has Differential Effects on Obese and Lean Mice

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Chronic sleep fragmentation (SF), common in patients with sleep apnea, correlates with the development of obesity. We hypothesized that SF differentially affects neurobehavior in lean wild-type (WT) and obese pan-leptin receptor knockout (POKO) mice fed the same normal diet. First, we established an SF paradigm by interrupting sleep every 2 min during the inactive light span. The maneuver was effective in decreasing sleep duration and bout length, and in increasing sleep state transition and waking, without significant rebound sleep in the dark span. Changes of sleep architecture were evident in the light span and consistent across days 1–10 of SF. There was reduced NREM, shortened sleep latency, and increased state transitions. During the light span of the first day of SF, there also was reduction of REM and increased delta power of slow-wave sleep. Potential effects of SF on thermal pain threshold, locomotor activity, and anxiety were then tested. POKO mice had a lower circadian amplitude of pain latency than WT mice in the hot plate test, and both groups had lowest tolerance at 4 pm (zeitgeber time (ZT) 10) and longest latency at 4 am (ZT 22). SF increased the pain threshold in WT but not in POKO mice when tested at 8 a.m. (ZT 2). Both the POKO mutation and SF resulted in reduced physical activity and increased anxiety, but there was no additive effect of these two factors. Overall, SF and the POKO mutation differentially regulate mouse behavior. The results suggest that obesity can blunt neurobehavioral responses to SF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balbo M, Leproult R, Van CE (2010) Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int J Endocrinol 2010:759234

    Article  PubMed Central  PubMed  Google Scholar 

  • Baud MO, Magistretti PJ, Petit JM (2013) Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice. J Sleep Res 22:3–12

    Article  PubMed  Google Scholar 

  • Besedovsky L, Lange T, Born J (2012) Sleep and immune function. Pflugers Arch 463:121–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonnet MH (1987) Sleep restoration as a function of periodic awakening, movement, or electroencephalographic change. Sleep 10:364–373

    CAS  PubMed  Google Scholar 

  • Bromley LE, Booth JN III, Kilkus JM, Imperial JG, Penev PD (2012) Sleep restriction decreases the physical activity of adults at risk for type 2 diabetes. Sleep 35:977–984

    PubMed Central  PubMed  Google Scholar 

  • Calvin AD, Carter RE, Adachi T, Macedo PG, Albuquerque FN, van der Walt C, Bukartyk J, Davison DE, Levine JA, Somers VK (2013) Effects of experimental sleep restriction on caloric intake and activity energy expenditure. Chest 144:79–86

    Article  PubMed Central  PubMed  Google Scholar 

  • Guzman-Marin R, Bashir T, Suntsova N, Szymusiak R, McGinty D (2007) Hippocampal neurogenesis is reduced by sleep fragmentation in the adult rat. Neuroscience 148:325–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsuchou H, He Y, Kastin AJ, Tu H, Markadakis EN, Rogers RC, Fossier PB, Pan W (2009) Obesity induces functional astrocytic leptin receptors in hypothalamus. Brain 132:889–902

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsuchou H, Wang Y, Cornelissen-Guillaume GG, Kastin AJ, Jang E, Halberg F, Pan W (2013) Diminished leptin signaling can alter circadian rhythm of metabolic activity and feeding. J Appl Physiol 115:995–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaushal N, Ramesh V, Gozal D (2012) TNF-alpha and temporal changes in sleep architecture in mice exposed to sleep fragmentation. PLoS ONE 7:e45610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimoff RJ (1996) Sleep fragmentation in obstructive sleep apnea. Sleep 19:S61–S66

    CAS  PubMed  Google Scholar 

  • Lautenbacher S, Kundermann B, Krieg JC (2006) Sleep deprivation and pain perception. Sleep Med Rev 10:357–369

    Article  PubMed  Google Scholar 

  • Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, Wright KP Jr (2013) Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci U S A 110:5695–5700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matos G, Ribeiro DA, Alvarenga TA, Hirotsu C, Scorza FA, Le Sueur-Maluf L, Noguti J, Cavalheiro EA, Tufik S, Andersen ML (2012) Behavioral and genetic effects promoted by sleep deprivation in rats submitted to pilocarpine-induced status epilepticus. Neurosci Lett 515:137–140

    Article  CAS  PubMed  Google Scholar 

  • Nair D, Zhang SX, Ramesh V, Hakim F, Kaushal N, Wang Y, Gozal D (2011) Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways in mouse. Am J Respir Crit Care Med 184:1305–1312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onen SH, Alloui A, Gross A, Eschallier A, Dubray C (2001) The effects of total sleep deprivation, selective sleep interruption and sleep recovery on pain tolerance thresholds in healthy subjects. J Sleep Res 10:35–42

    Article  CAS  PubMed  Google Scholar 

  • Pan W, Kastin AJ (2014) Leptin: a biomarker for sleep disorders? Sleep Med Rev 18:283–290

    Article  PubMed  Google Scholar 

  • Pan W, Hsuchou H, He Y, Sakharkar A, Cain C, Yu C, Kastin AJ (2008) Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinology 149:2798–2806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prasad P, Li LP, Halter S, Cabray J, Ye M, Batlle D (2010) Evaluation of renal hypoxia in diabetic mice by BOLD MRI. Investig Radiol 45:819–822

    Article  Google Scholar 

  • Radulovacki M, Virus RM, Djuricic-Nedelson M, Green RD (1984) Adenosine analogs and sleep in rats. J Pharmacol Exp Ther 228:268–274

    CAS  PubMed  Google Scholar 

  • Roehrs T, Hyde M, Blaisdell B, Greenwald M, Roth T (2006) Sleep loss and REM sleep loss are hyperalgesic. Sleep 29:145–151

    PubMed  Google Scholar 

  • Sinton CM, Kovakkattu D, Friese RS (2009) Validation of a novel method to interrupt sleep in the mouse. J Neurosci Methods 184:71–78

    Article  PubMed  Google Scholar 

  • Tartar JL, Ward CP, McKenna JT, Thakkar M, Arrigoni E, McCarley RW, Brown RE, Strecker RE (2006) Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. Eur J Neurosci 23:2739–2748

    Article  PubMed Central  PubMed  Google Scholar 

  • Tartar JL, Ward CP, Cordeira JW, Legare SL, Blanchette AJ, McCarley RW, Strecker RE (2009) Experimental sleep fragmentation and sleep deprivation in rats increases exploration in an open field test of anxiety while increasing plasma corticosterone levels. Behav Brain Res 197:450–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, He J, Kastin AJ, Hsuchou H, Pan W (2013) Hypersomnolence and reduced activity in pan-leptin receptor knockout mice. J Mol Neurosci 51:1038–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu X, Kastin AJ, He Y, Hsuchou H, Rood JC, Pan W (2010) Essential role of interleukin-15 receptor in normal anxiety behavior. Brain Behav Immun 24:1340–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zager A, Andersen ML, Ruiz FS, Antunes IB, Tufik S (2007) Effects of acute and chronic sleep loss on immune modulation of rats. Am J Physiol Regul Integr Comp Physiol 293:R504–R509

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Grant support for the BBB Group was provided by NIH (DK54880, DK92245, NS62291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Kastin, A.J., Wang, Y. et al. Sleep Fragmentation Has Differential Effects on Obese and Lean Mice. J Mol Neurosci 55, 644–652 (2015). https://doi.org/10.1007/s12031-014-0403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0403-7

Keywords

Navigation