Skip to main content
Log in

Molecular Neuroimaging of Post-Injury Plasticity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Nerve injury induces long-term changes in neuronal activity in the primary somatosensory cortex (S1), which has often been implicated as the origin of sensory dysfunction. However, the cellular mechanisms underlying this phenomenon remain unclear. C-fos is an immediate early gene, which has been shown to play an instrumental role in plasticity. By developing a new platform to image real-time changes in gene expression in vivo, we investigated whether injury modulates the levels of c-fos in layer V of S1, since previous studies have suggested that these neurons are particularly susceptible to injury. The yellow fluorescent protein, ZsYellow1, under the regulation of the c-fos promoter, was expressed throughout the rat brain. A fiber-based confocal microscope that enabled deep brain imaging was utilized, and local field potentials were collected simultaneously. In the weeks following limb denervation in adult rats (n = 10), sensory stimulation of the intact limb induced significant increases in c-fos gene expression in cells located in S1, both contralateral (affected, 27.6 ± 3 cells) and ipsilateral (8.6 ± 3 cells) to the injury, compared to controls (n = 10, 13.4 ± 3 and 1.0 ± 1, respectively, p value <0.05). Thus, we demonstrated that injury activates cellular mechanisms that are involved in reshaping neuronal connections, and this may translate to neurorehabilitative potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bar-Shir A, Liu G, Greenberg MM, Bulte JWM, Gilad AA (2013) Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nat Protoc 8:2380–2391

    Article  CAS  PubMed  Google Scholar 

  • Barth AL, Gerkin RC, Dean KL (2004) Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J Neurosci 24:6466–6475

    Article  CAS  PubMed  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–7851

    CAS  PubMed  Google Scholar 

  • Chaudhuri A, Zangenehpour S, Rahbar-Dehgan F, Ye F (2000) Molecular maps of neural activity and quiescence. Acta Neurobiol Exp (Wars) 60:403–410

    CAS  Google Scholar 

  • Cifani C, Koya E, Navarre BM, Calu DJ, Baumann MH, Marchant NJ, Liu QR, Khuc T, Pickel J, Lupica CR, Shaham Y, Hope BT (2012) Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats. J Neurosci 32:8480–8490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarkson C, Juiz JM, Merchan MA (2010) Transient down-regulation of sound-induced c-fos protein expression in the inferior colliculus after ablation of the auditory cortex. Front Neuroanat 4:141

    Article  PubMed Central  PubMed  Google Scholar 

  • Cunningham JT, Grindstaff RJ, Grindstaff RR, Sullivan MJ (2002) Fos immunoreactivity in the diagonal band and the perinuclear zone of the supraoptic nucleus after hypertension and hypervolaemia in unanaesthetized rats. J Neuroendocrinol 14:219–227

    Article  CAS  PubMed  Google Scholar 

  • Curran T, Morgan JI (1995) Fos: an immediate-early transcription factor in neurons. J Neurobiol 26:403–412

    Article  CAS  PubMed  Google Scholar 

  • Dampney RA, Li YW, Hirooka Y, Potts P, Polson JW (1995) Use of c-fos functional mapping to identify the central baroreceptor reflex pathway: advantages and limitations. Clin Exp Hypertens 17:197–208

    Article  CAS  PubMed  Google Scholar 

  • Dragunow M, Faull R (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265

    Article  CAS  PubMed  Google Scholar 

  • Ehret G, Fischer R (1991) Neuronal activity and tonotopy in the auditory system visualized by c-fos gene expression. Brain Res 567:350–354

    Article  CAS  PubMed  Google Scholar 

  • Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE (2005) Phantom pain, residual limb pain, and back pain in amputees: results of a national survey. Arch Phys Med Rehabil 86:1910–1919

    Article  PubMed  Google Scholar 

  • Euler M, Wang Y, Otto P, Tomaso H, Escudero R, Anda P, Hufert FT, Weidmann M (2012) Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. J Clin Microbiol 50:2234–2238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer T, Gemeinhardt I, Wagner S, Stieglitz DV, Schnorr J, Hermann KG, Ebert B, Petzelt D, Macdonald R, Licha K, Schirner M, Krenn V, Kamradt T, Taupitz M (2006) Assessment of unspecific near-infrared dyes in laser-induced fluorescence imaging of experimental arthritis. Acad Radiol 13:4–13

    Article  PubMed  Google Scholar 

  • Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563–590

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fleischmann A, Hvalby O, Jensen V, Strekalova T, Zacher C, Layer LE, Kvello A, Reschke M, Spanagel R, Sprengel R, Wagner EF, Gass P (2003) Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J Neurosci 23:9116–9122

    CAS  PubMed  Google Scholar 

  • Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484

    Article  CAS  PubMed  Google Scholar 

  • Fujihara H, Ueta Y, Suzuki H, Katoh A, Ohbuchi T, Otsubo H, Dayanithi G, Murphy D (2009) Robust up-regulation of nuclear red fluorescent-tagged fos marks neuronal activation in green fluorescent vasopressin neurons after osmotic stimulation in a double-transgenic rat. Endocrinology 150:5633–5638

    Article  CAS  PubMed  Google Scholar 

  • Gilad AA, McMahon MT, Walczak P, Winnard PT Jr, Raman V, van Laarhoven HW, Skoglund CM, Bulte JW, van Zijl PC (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25:217–219

    Article  CAS  PubMed  Google Scholar 

  • Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311:433–438

    Article  CAS  PubMed  Google Scholar 

  • Gu ZZ, Pan YC, Cui JK, Klebuc MJ, Shenaq S, Liu PK (1997) Gene expression and apoptosis in the spinal cord neurons after sciatic nerve injury. Neurochem Int 30:417–426

    Article  CAS  PubMed  Google Scholar 

  • Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21:5089–5098

    CAS  PubMed  Google Scholar 

  • Han Y, Li N, Zeiler SR, Pelled G (2013) Peripheral nerve injury induces immediate increases in layer v neuronal activity. Neurorehabil Neural Repair 27:664–672

    Article  PubMed Central  PubMed  Google Scholar 

  • Jasanoff A (2007) MRI contrast agents for functional molecular imaging of brain activity. Curr Opin Neurobiol 17:593–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaczmarek L, Zangenehpour S, Chaudhuri A (1999) Sensory regulation of immediate-early genes c-fos and zif268 in monkey visual cortex at birth and throughout the critical period. Cereb Cortex 9:179–187

    Article  CAS  PubMed  Google Scholar 

  • Karl A, Birbaumer N, Lutzenberger W, Cohen LG, Flor H (2001) Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci 21:3609–3618

    CAS  PubMed  Google Scholar 

  • Kasof GM, Mandelzys A, Maika SD, Hammer RE, Curran T, Morgan JI (1995) Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos-lacZ transgenic rats. J Neurosci 15:4238–4249

    CAS  PubMed  Google Scholar 

  • Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, Takemoto-Kimura S, Worley PF, Bito H (2009) Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci U S A 106:316–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawashima T, Kitamura K, Suzuki K, Nonaka M, Kamijo S, Takemoto-Kimura S, Kano M, Okuno H, Ohki K, Bito H (2013) Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat Methods 10:889–895

    Article  CAS  PubMed  Google Scholar 

  • Kemp A, Tischmeyer W, Manahan-Vaughan D (2013) Learning-facilitated long-term depression requires activation of the immediate early gene, c-fos, and is transcription dependent. Behav Brain Res 254:83–91

    Article  CAS  PubMed  Google Scholar 

  • Kuner R (2010) Central mechanisms of pathological pain. Nat Med 16:1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Lanahan A, Worley P (1998) Immediate-early genes and synaptic function. Neurobiol Learn Mem 70:37–43

    Article  CAS  PubMed  Google Scholar 

  • Li N, Downey JE, Bar-Shir A, Gilad AA, Walczak P, Kim H, Joel SE, Pekar JJ, Thakor NV, Pelled G (2011) Optogenetic-guided cortical plasticity after nerve injury. Proc Natl Acad Sci U S A 108:8838–8843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin HY, Tang CH, Chen JH, Chuang JY, Huang SM, Tan TW, Lai CH, Lu DY (2011) Peptidoglycan induces interleukin-6 expression through the TLR2 receptor, JNK, c-Jun, and AP-1 pathways in microglia. J Cell Physiol 226:1573–1582

    Article  CAS  PubMed  Google Scholar 

  • Liu CH, Kim YR, Ren JQ, Eichler F, Rosen BR, Liu PK (2007) Imaging cerebral gene transcripts in live animals. J Neurosci 27:713–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu CH, Ren JQ, Yang J, Liu CM, Mandeville JB, Rosen BR, Bhide PG, Yanagawa Y, Liu PK (2009) DNA-based MRI probes for specific detection of chronic exposure to amphetamine in living brains. J Neurosci 29:10663–10670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lundborg G (2003) Richard P. Bunge memorial lecture. Nerve injury and repair—a challenge to the plastic brain. J Peripher Nerv Syst 8:209–226

    Article  PubMed  Google Scholar 

  • Menetrey D, Gannon A, Levine JD, Basbaum AI (1989) Expression of c-fos protein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation. J Comp Neurol 285:177–195

    Article  CAS  PubMed  Google Scholar 

  • Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41:2449–2461

    Article  CAS  PubMed  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100

    CAS  PubMed  Google Scholar 

  • Munglani R, Hunt SP (1995) Molecular biology of pain. Br J Anaesth 75:186–192

    Article  CAS  PubMed  Google Scholar 

  • Navarro X, Vivo M, Valero-Cabre A (2007) Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 82:163–201

    Article  CAS  PubMed  Google Scholar 

  • Olsson AK, Vadhammar K, Nanberg E (2000) Activation and protein kinase C-dependent nuclear accumulation of ERK in differentiating human neuroblastoma cells. Exp Cell Res 256:454–467

    Article  CAS  PubMed  Google Scholar 

  • Ons S, Rotllant D, Marin-Blasco IJ, Armario A (2010) Immediate-early gene response to repeated immobilization: Fos protein and arc mRNA levels appear to be less sensitive than c-fos mRNA to adaptation. Eur J Neurosci 31:2043–2052

    Article  PubMed  Google Scholar 

  • Pawela CP, Biswal BB, Hudetz AG, Li R, Jones SR, Cho YR, Matloub HS, Hyde JS (2010) Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI). Neuroimage 49:2467–2478

    Article  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, Sydney

    Google Scholar 

  • Pelled G, Dodd SJ, Koretsky AP (2006) Catheter confocal fluorescence imaging and functional magnetic resonance imaging of local and systems level recovery in the regenerating rodent sciatic nerve. Neuroimage 30:847–856

    Article  PubMed  Google Scholar 

  • Pelled G, Chuang KH, Dodd SJ, Koretsky AP (2007) Functional MRI detection of bilateral cortical reorganization in the rodent brain following peripheral nerve deafferentation. Neuroimage 37:262–273

    Article  PubMed Central  PubMed  Google Scholar 

  • Pelled G, Bergstrom DA, Tierney PL, Conroy RS, Chuang KH, Yu D, Leopold DA, Walters JR, Koretsky AP (2009) Ipsilateral cortical fMRI responses after peripheral nerve damage in rats reflect increased interneuron activity. Proc Natl Acad Sci U S A 106:14114–14119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranieri F, Podda MV, Riccardi E, Frisullo G, Dileone M, Profice P, Pilato F, Di Lazzaro V, Grassi C (2012) Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol 107:1868–1880

    Article  CAS  PubMed  Google Scholar 

  • Reijmers LG, Perkins BL, Matsuo N, Mayford M (2007) Localization of a stable neural correlate of associative memory. Science 317:1230–1233

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan VJ, Radhakrishnan H, Jiang JY, Barry S, Cable AE (2012) Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast. Opt Express 20:2220–2239

    Article  PubMed Central  PubMed  Google Scholar 

  • Srinivasan VJ, Mandeville ET, Can A, Blasi F, Climov M, Daneshmand A, Lee JH, Yu E, Radhakrishnan H, Lo EH, Sakadzic S, Eikermann-Haerter K, Ayata C (2013) Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke. PLoS One 8:e71478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sumner JP, Shapiro EM, Maric D, Conroy R, Koretsky AP (2009) In vivo labeling of adult neural progenitors for MRI with micron sized particles of iron oxide: quantification of labeled cell phenotype. Neuroimage 44:671–678

    Article  PubMed Central  PubMed  Google Scholar 

  • Susini S, Van Haasteren G, Li S, Prentki M, Schlegel W (2000) Essentiality of intron control in the induction of c-fos by glucose and glucoincretin peptides in INS-1 beta-cells. FASEB J 14:128–136

    CAS  PubMed  Google Scholar 

  • Tian JB, Bishop GA (2002) Stimulus-dependent activation of c-Fos in neurons and glia in the rat cerebellum. J Chem Neuroanat 23:157–170

    Article  CAS  PubMed  Google Scholar 

  • Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, Bito H, Morris RG (2011) Schema-dependent gene activation and memory encoding in neocortex. Science 333:891–895

    Article  CAS  PubMed  Google Scholar 

  • Vincent P, Maskos U, Charvet I, Bourgeais L, Stoppini L, Leresche N, Changeux JP, Lambert R, Meda P, Paupardin-Tritsch D (2006) Live imaging of neural structure and function by fibred fluorescence microscopy. EMBO Rep 7:1154–1161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wada M, Watanabe S, Chung UI, Higo N, Taniguchi T, Kitazawa S (2010) Noninvasive bioluminescence imaging of c-fos expression in the mouse barrel cortex. Behav Brain Res 208:158–162

    Article  CAS  PubMed  Google Scholar 

  • Werhahn KJ, Mortensen J, Kaelin-Lang A, Boroojerdi B, Cohen LG (2002) Cortical excitability changes induced by deafferentation of the contralateral hemisphere. Brain 125:1402–1413

    Article  PubMed  Google Scholar 

  • Wilson Y, Nag N, Davern P, Oldfield BJ, McKinley MJ, Greferath U, Murphy M (2002) Visualization of functionally activated circuitry in the brain. Proc Natl Acad Sci U S A 99:3252–3257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yasoshima Y, Morimoto T, Yamamoto T (2000) Different disruptive effects on the acquisition and expression of conditioned taste aversion by blockades of amygdalar ionotropic and metabotropic glutamatergic receptor subtypes in rats. Brain Res 869:15–24

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz-Rastoder E, Miyamae T, Braun AE, Thiels E (2011) LTP- and LTD-inducing stimulations cause opposite changes in arc/arg3.1 mRNA level in hippocampal area CA1 in vivo. Hippocampus 21:1290–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by R01NS072171, R01NS079288, and MSCRFII-0042. The authors thank Dr. Alan Koretsky (NIH/NINDS) for providing the Cellvizio and Ms. Mary McAllister for editing the manuscript.

Conflict of Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galit Pelled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouroukhin, Y., Nonyane, B.A.S., Gilad, A.A. et al. Molecular Neuroimaging of Post-Injury Plasticity. J Mol Neurosci 54, 630–638 (2014). https://doi.org/10.1007/s12031-014-0347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0347-y

Keywords

Navigation