Skip to main content

Advertisement

Log in

Differential Regulation of Lipid Metabolism Genes in the Brain of Acetylcholinesterase Knockout Mice

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Mice deficient in acetylcholinesterase (AChE; EC3.1.1.7) exhibited significant phenotypical and biochemical changes when compared with wild-type littermates. They showed a delay of growth in weight and size, immature external ears, and persistent body tremor, and they circled when walking. The molecular mechanisms underlying these changes have not been investigated yet. Here, we studied the profiles of both the messenger RNA (mRNA) and protein expression in the brain of AChE-deficient mice using mRNA microarray, quantitative PCR, and two-dimensional difference gel electrophoresis (2D DIGE) coupled to protein identification with matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Analysis of gene expression profile was conducted by DAVID (http://david.abcc.ncifcrf.gov) and Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com). Previous results implicated that there is a close relationship between lipid metabolisms which were associated with central nervous system development. Here, we demonstrated that the mRNA expressions of brain specific fatty acid protein 7 (fabp-7) and phospholipase A2 group IV (pla2g4) were significantly downregulated in AChE-deficient mice. These results suggested that AChE may play a role in neurogenesis and neurodegeneration by specifically regulating lipid metabolism in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arai Y, Funatsu N, Numayama-Tsuruta K, Nomura T, Nakamura S, Osumi N (2005) Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex. J Neurosci 25:9752–9761

    Article  CAS  PubMed  Google Scholar 

  • Balsinde J, Balboa MA, Dennis EA (1997) Inflammatory activation of arachidonic acid signaling in murine P388D1 macrophages via sphingomyelin synthesis. J Biol Chem 272:20373–20377

    Article  CAS  PubMed  Google Scholar 

  • Camp S, Zhang L, Marquez M, de la Torre B, Long JM, Bucht G, Taylor P (2005) Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion. Chem Biol Interact 157–158:79–86

    Article  PubMed  Google Scholar 

  • Capper EA, Marshall LA (2001) Mammalian phospholipases A2: mediators of inflammation, proliferation and apoptosis. Prog Lipid Res 40:167–197

    Article  CAS  PubMed  Google Scholar 

  • Chatonnet F, Boudinot E, Chatonnet A, Taysse L, Daulon S, Champagnat J, Foutz AS (2003) Respiratory survival mechanisms in acetylcholinesterase knockout mouse. Eur J Neurosci 18:1419–1427

    Article  PubMed  Google Scholar 

  • Chmurzynska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47:39–48

    Article  PubMed  Google Scholar 

  • Dagai L, Peri-Naor R, Birk RZ (2009) Docosahexaenoic acid significantly stimulates immediate early response genes and neurite outgrowth. Neurochem Res 34:867–875

    Article  CAS  PubMed  Google Scholar 

  • Duysen EG, Fry DL, Lockridge O (2002) Early weaning and culling eradicated Helicobacter hepaticus from an acetylcholinesterase knockout 129S6/SvEvTac mouse colony. Comp Med 52:461–466

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29:1961–1977

    Article  CAS  PubMed  Google Scholar 

  • Fatehi M, Rowan EG, Harvey AL (2002) An electrophysiological study on the effects of Pa-1G (a phospholipase A2) from the venom of king brown snake, Pseudechis australis, on neuromuscular function. Toxicon 40:69–75

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908

    Article  CAS  PubMed  Google Scholar 

  • Fenton WS, Hibbeln J, Knable M (2000) Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 47:8–21

    Article  CAS  PubMed  Google Scholar 

  • Girard E, Barbier J, Chatonnet A, Krejci E, Molgo J (2005) Synaptic remodeling at the skeletal neuromuscular junction of acetylcholinesterase knockout mice and its physiological relevance. Chem Biol Interact 157–158:87–96

    Article  PubMed  Google Scholar 

  • Haunerland NH, Spener F (2004) Fatty acid-binding proteins—insights from genetic manipulations. Prog Lipid Res 43:328–349

    Article  CAS  PubMed  Google Scholar 

  • Kusakabe T, Maeda M, Hoshi N, Sugino T, Watanabe K, Fukuda T, Suzuki T (2000) Fatty acid synthase is expressed mainly in adult hormone-sensitive cells or cells with high lipid metabolism and in proliferating fetal cells. J Histochem Cytochem 48:613–622

    Article  CAS  PubMed  Google Scholar 

  • Li B, Duysen EG, Volpicelli-Daley LA, Levey AI, Lockridge O (2003) Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice. Pharmacol Biochem Behav 74:977–986

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wang M, Tan L, Wang C, Ma J, Li N, Li Y, Xu G, Li J (2005) Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts. J Lipid Res 46:1904–1913

    Article  CAS  PubMed  Google Scholar 

  • Liu RZ, Denovan-Wright EM, Degrave A, Thisse C, Thisse B, Wright JM (2004) Differential expression of duplicated genes for brain-type fatty acid-binding proteins (fabp7a and fabp7b) during early development of the CNS in zebrafish (Danio rerio). Gene Expr Patterns 4:379–387

    Article  CAS  PubMed  Google Scholar 

  • Meshorer E, Soreq H (2006) Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends Neurosci 29:216–224

    Article  CAS  PubMed  Google Scholar 

  • Minic J, Chatonnet A, Krejci E, Molgo J (2003) Butyrylcholinesterase and acetylcholinesterase activity and quantal transmitter release at normal and acetylcholinesterase knockout mouse neuromuscular junctions. Br J Pharmacol 138:177–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ofek K, Schoknecht K, Melamed-Book N, Heinemann U, Friedman A, Soreq H (2012) Fluoxetine induces vasodilatation of cerebral arterioles by co-modulating NO/muscarinic signalling. J Cell Mol Med 16:2736–2744

    Article  CAS  PubMed  Google Scholar 

  • Owada Y, Abdelwahab SA, Kitanaka N, Sakagami H, Takano H, Sugitani Y, Sugawara M, Kawashima H, Kiso Y, Mobarakeh JI, Yanai K, Kaneko K, Sasaki H, Kato H, Saino-Saito S, Matsumoto N, Akaike N, Noda T, Kondo H (2006) Altered emotional behavioral responses in mice lacking brain-type fatty acid-binding protein gene. Eur J Neurosci 24:175–187

    Article  PubMed  Google Scholar 

  • Rice SG, Nowak L, Duysen EG, Lockridge O, Lahiri DK, Reyes PF (2007) Neuropathological and immunochemical studies of brain parenchyma in acetylcholinesterase knockout mice: implications in Alzheimer’s disease. J Alzheimers Dis 11:481–489

    CAS  PubMed  Google Scholar 

  • Schmid RS, Yokota Y, Anton ES (2006) Generation and characterization of brain lipid-binding protein promoter-based transgenic mouse models for the study of radial glia. Glia 53:345–351

    Article  PubMed  Google Scholar 

  • Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A, Soreq H (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31:965–973

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser NR, Swanson DR (1996) Indomethacin and Alzheimer’s disease. Neurology 46:583

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser NR, Dissanayake S, Kapil A (1996) Rapid regulation of neurite outgrowth and retraction by phospholipase A2-derived arachidonic acid and its metabolites. Brain Res 721:39–48

    Article  CAS  PubMed  Google Scholar 

  • Strokin M, Sergeeva M, Reiser G (2003) Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 139:1014–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wainwright PE (2002) Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc Nutr Soc 61:61–69

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Botolin D, Christian B, Busik J, Xu J, Jump DB (2005) Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. J Lipid Res 46:706–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warren G, McKendrick M, Peet M (1999) The role of essential fatty acids in chronic fatigue syndrome. A case-controlled study of red-cell membrane essential fatty acids (EFA) and a placebo-controlled treatment study with high dose of EFA. Acta Neurol Scand 99:112–116

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Wilder PJ, Stribley J, Chatonnet A, Rizzino A, Taylor P, Hinrichs SH, Lockridge O (1999) Knockout of one acetylcholinesterase allele in the mouse. Chem Biol Interact 119–120:289–299

    Article  PubMed  Google Scholar 

  • Xie W, Stribley JA, Chatonnet A, Wilder PJ, Rizzino A, McComb RD, Taylor P, Hinrichs SH, Lockridge O (2000) Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J Pharmacol Exp Ther 293:896–902

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Cheong David Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HQ., Wang, Y., Chan, KL. et al. Differential Regulation of Lipid Metabolism Genes in the Brain of Acetylcholinesterase Knockout Mice. J Mol Neurosci 53, 397–408 (2014). https://doi.org/10.1007/s12031-014-0267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0267-x

Keywords

Navigation