Journal of Molecular Neuroscience

, Volume 54, Issue 1, pp 100–108 | Cite as

Sex Differences and Laterality of Insulin Receptor Distribution in Developing Rat Hippocampus: an Immunohistochemical Study

Article

Abstract

This study aimed to compare the regional distribution of insulin receptor in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14) between male/female and right/left hippocampi. We found that the number of insulin receptor (InsR)-immunoreactive-positive (InsR+) cells in CA1 continued to increase until P7 and remained unchanged thereafter. A marked increase in distribution of InsR+ cells in CA3 from P0 to P14 was observed, although there was a significant decline in the number of InsR+ cells in dentate gyrus (DG) at the same time. No differences between the right/left and male/female hippocampi were detected at P0 (P > 0.05). Seven-day-old female rats showed a higher number of labeled cells in the left than in the right hippocampus. Moreover, the differences between the number of InsR+ cells in area CA1 and CA3 were statistically significant between males and females (P < 0.05). At P14, the number of InsR+ cells was significantly higher in CA1 and DG of males, especially in the right one (P < 0.05). These results indicate the existence of a differential distribution pattern of InsR between the left/right and male/female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left/right asymmetry in the hippocampus.

Keywords

Insulin receptor Hippocampus Newborn rat 

References

  1. Agrawal R, Tyagi E, Shukla R, Nath C (2011) Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol 21(3):261–273. doi:10.1016/j.euroneuro.2010.11.009 PubMedCrossRefGoogle Scholar
  2. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335PubMedCrossRefGoogle Scholar
  3. Baron-Van Evercooren A, Olichon-Berthe C, Kowalski A, Visciano G, Van Obberghen E (1991) Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J Neurosci Res 28(2):244–253. doi:10.1002/jnr.490280212 PubMedCrossRefGoogle Scholar
  4. Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM (1988) Insulin and insulin-like growth factors in the CNS. Trends Neurosci 11(3):107–111PubMedCrossRefGoogle Scholar
  5. Bayer SA (1980a) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190(1):87–114. doi:10.1002/cne.901900107 PubMedCrossRefGoogle Scholar
  6. Bayer SA (1980b) Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol 190(1):115–134. doi:10.1002/cne.901900108 PubMedCrossRefGoogle Scholar
  7. Bondy CA, Bach MA, Lee WH (1992) Mapping of brain insulin and insulin-like growth factor receptor gene expression by in situ hybridization. Neuroprotocols 1(3):240–249CrossRefGoogle Scholar
  8. Bowers JM, Waddell J, McCarthy MM (2010) A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol Sex Differ 1(1):8. doi:10.1186/2042-6410-1-8 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Castle DJ, Murray RM (1991) The neurodevelopmental basis of sex differences in schizophrenia. Psychol Med 21(3):565–575PubMedCrossRefGoogle Scholar
  10. Chiu SL, Cline HT (2010) Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 5:7. doi:10.1186/1749-8104-5-7 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM (1998) Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol 19(4):323–362. doi:10.1006/frne.1998.0171 PubMedCrossRefGoogle Scholar
  12. de Lacoste MC, Adesanya T, Woodward DJ (1990) Measures of gender differences in the human brain and their relationship to brain weight. Biol Psychiatry 28(11):931–942PubMedCrossRefGoogle Scholar
  13. de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18(3):143–150PubMedCrossRefGoogle Scholar
  14. DeCarolis NA, Eisch AJ (2010) Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 58(6):884–893. doi:10.1016/j.neuropharm.2009.12.013 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Diamond MC, Murphy GM Jr, Akiyama K, Johnson RE (1982) Morphologic hippocampal asymmetry in male and female rats. Exp Neurol 76(3):553–565PubMedCrossRefGoogle Scholar
  16. Diamond MC, Johnson RE, Young D, Singh SS (1983) Age-related morphologic differences in the rat cerebral cortex and hippocampus: male–female; right–left. Exp Neurol 81(1):1–13PubMedCrossRefGoogle Scholar
  17. Dou JT, Chen M, Dufour F, Alkon DL, Zhao WQ (2005) Insulin receptor signaling in long-term memory consolidation following spatial learning. Learn Mem 12(6):646–655. doi:10.1101/lm.88005 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Eichenbaum H (1996) Is the rodent hippocampus just for ‘place’? Curr Opin Neurobiol 6(2):187–195PubMedCrossRefGoogle Scholar
  19. Exner C, Nehrkorn B, Martin V, Huber M, Shiratori K, Rief W (2008) Sex-dependent hippocampal volume reductions in schizophrenia relate to episodic memory deficits. J Neuropsychiatry Clin Neurosci 20(2):227–230. doi:10.1176/appi.neuropsych.20.2.227 PubMedGoogle Scholar
  20. Forster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7(4):259–267. doi:10.1038/nrn1882 PubMedCrossRefGoogle Scholar
  21. Foster DJ, Knierim JJ (2012) Sequence learning and the role of the hippocampus in rodent navigation. Curr Opin Neurobiol 22(2):294–300. doi:10.1016/j.conb.2011.12.005 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Frazier JA, Hodge SM, Breeze JL, Giuliano AJ, Terry JE, Moore CM, Kennedy DN, Lopez-Larson MP, Caviness VS, Seidman LJ, Zablotsky B, Makris N (2008) Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophr Bull 34(1):37–46. doi:10.1093/schbul/sbm120 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Fuhs MC, Touretzky DS (2007) Context learning in the rodent hippocampus. Neural Comput 19(12):3173–3215. doi:10.1162/neco.2007.19.12.3173 PubMedCrossRefGoogle Scholar
  24. Galea LA (2008) Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain Res Rev 57(2):332–341. doi:10.1016/j.brainresrev.2007.05.008 PubMedCrossRefGoogle Scholar
  25. Galea LA, Spritzer MD, Barker JM, Pawluski JL (2006) Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus 16(3):225–232. doi:10.1002/hipo.20154 PubMedCrossRefGoogle Scholar
  26. Giap BT, Jong CN, Ricker JH, Cullen NK, Zafonte RD (2000) The hippocampus: anatomy, pathophysiology, and regenerative capacity. J Head Trauma Rehabil 15(3):875–894PubMedCrossRefGoogle Scholar
  27. Gilbert PE, Kesner RP (2002) Role of the rodent hippocampus in paired-associate learning involving associations between a stimulus and a spatial location. Behav Neurosci 116(1):63–71PubMedCrossRefGoogle Scholar
  28. Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard JR, Pakkenberg B et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96(10):857–881Google Scholar
  29. Haj-ali V, Mohaddes G, Babri SH (2009) Intracerebroventricular insulin improves spatial learning and memory in male Wistar rats. Behav Neurosci 123(6):1309–1314. doi:10.1037/a0017722 PubMedCrossRefGoogle Scholar
  30. Hallschmid M, Benedict C, Born J, Kern W (2007) Targeting metabolic and cognitive pathways of the CNS by intranasal insulin administration. Expert Opin Drug Deliv 4(4):319–322. doi:10.1517/17425247.4.4.319 PubMedCrossRefGoogle Scholar
  31. Hami J, Sadr-Nabavi A, Sankian M, Haghir H (2012) Sex differences and left–right asymmetries in expression of insulin and insulin-like growth factor-1 receptors in developing rat hippocampus. Brain Struct Funct 217(2):293–302. doi:10.1007/s00429-011-0358-1 PubMedCrossRefGoogle Scholar
  32. Han X, Ma Y, Liu X, Wang L, Qi S, Zhang Q, Du Y (2012) Changes in insulin-signaling transduction pathway underlie learning/memory deficits in an Alzheimer's disease rat model. J Neural Transm 119(11):1407–1416. doi:10.1007/s00702-012-0803-1 PubMedCrossRefGoogle Scholar
  33. Hayman LA, Fuller GN, Cavazos JE, Pfleger MJ, Meyers CA, Jackson EF (1998) The hippocampus: normal anatomy and pathology. AJR Am J Roentgenol 171(4):1139–1146. doi:10.2214/ajr.171.4.9763010 PubMedCrossRefGoogle Scholar
  34. Heidenreich KA (1991) Insulin in the brain what is its role? Trends Endocrinol Metab 2(1):9–12PubMedCrossRefGoogle Scholar
  35. Hill JM, Lesniak MA, Pert CB, Roth J (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17(4):1127–1138PubMedCrossRefGoogle Scholar
  36. Hine RJ, Das GD (1974) Neuroembryogenesis in the hippocampal formation of the rat. An autoradiographic study. Z Anat Entwicklungsgesch 144(2):173–186PubMedCrossRefGoogle Scholar
  37. Humphrey T (1967) The development of the human hippocampal fissure. J Anat 101(Pt 4):655–676PubMedCentralPubMedGoogle Scholar
  38. Hussain RJ, Carpenter DO (2005) A comparison of the roles of protein kinase C in long-term potentiation in rat hippocampal areas CA1 and CA3. Cell Mol Neurobiol 25(3–4):649–661. doi:10.1007/s10571-005-4045-8 PubMedCrossRefGoogle Scholar
  39. Kappy MS, Raizada MK (1982) Adult-level insulin binding is present in term fetal rat CNS membranes. Brain Res 249(2):390–392PubMedGoogle Scholar
  40. Kappy M, Sellinger S, Raizada M (1984) Insulin binding in four regions of the developing rat brain. J Neurochem 42(1):198–203PubMedCrossRefGoogle Scholar
  41. Kar S, Chabot JG, Quirion R (1993) Quantitative autoradiographic localization of [125I]insulin-like growth factor I, [125I]insulin-like growth factor II, and [125I]insulin receptor binding sites in developing and adult rat brain. J Comp Neurol 333(3):375–397. doi:10.1002/cne.903330306 PubMedCrossRefGoogle Scholar
  42. Knowles WD (1992) Normal anatomy and neurophysiology of the hippocampal formation. J Clin Neurophysiol 9(2):252–263PubMedCrossRefGoogle Scholar
  43. Kohl MM, Shipton OA, Deacon RM, Rawlins JN, Deisseroth K, Paulsen O (2011) Hemisphere-specific optogenetic stimulation reveals left–right asymmetry of hippocampal plasticity. Nat Neurosci 14(11):1413–1415. doi:10.1038/nn.2915 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Kumazawa-Manita N, Hama H, Miyawaki A, Iriki A (2013) Tool use specific adult neurogenesis and synaptogenesis in rodent (Octodon degus) hippocampus. PLoS One 8(3):e58649. doi:10.1371/journal.pone.0058649 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Lancaster FE (1994) Gender differences in the brain: implications for the study of human alcoholism. Alcohol Clin Exp Res 18(3):740–746PubMedCrossRefGoogle Scholar
  46. Lister JP, Tonkiss J, Blatt GJ, Kemper TL, DeBassio WA, Galler JR, Rosene DL (2006) Asymmetry of neuron numbers in the hippocampal formation of prenatally malnourished and normally nourished rats: a stereological investigation. Hippocampus 16(11):946–958. doi:10.1002/hipo.20221 PubMedCrossRefGoogle Scholar
  47. Marks JL, Porte D Jr, Stahl WL, Baskin DG (1990) Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 127(6):3234–3236PubMedCrossRefGoogle Scholar
  48. Martin SJ, Clark RE (2007) The rodent hippocampus and spatial memory: from synapses to systems. Cell Mol Life Sci 64(4):401–431. doi:10.1007/s00018-007-6336-3 PubMedCrossRefGoogle Scholar
  49. McBain CJ (2008) Differential mechanisms of transmission and plasticity at mossy fiber synapses. Prog Brain Res 169:225–240. doi:10.1016/S0079-6123(07)00013-1 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Moosavi M, Naghdi N, Maghsoudi N, Zahedi Asl S (2006) The effect of intrahippocampal insulin microinjection on spatial learning and memory. Horm Behav 50(5):748–752. doi:10.1016/j.yhbeh.2006.06.025 PubMedCrossRefGoogle Scholar
  51. Morris JA, Jordan CL, Breedlove SM (2004) Sexual differentiation of the vertebrate nervous system. Nat Neurosci 7(10):1034–1039. doi:10.1038/nn1325nn1325 PubMedCrossRefGoogle Scholar
  52. Mudd LM, Masters BA, Raizada MK (1988) Insulin and related growth factors: effects on the nervous system and mechanism for neurite growth and regeneration. Understanding brain development and repair of cns injury. Neurochem Int 12(4):415–417PubMedCrossRefGoogle Scholar
  53. Muramatsu R, Ikegaya Y, Matsuki N, Koyama R (2007) Neonatally born granule cells numerically dominate adult mice dentate gyrus. Neuroscience 148(3):593–598. doi:10.1016/j.neuroscience.2007.06.040 PubMedCrossRefGoogle Scholar
  54. Nakae J, Kido Y, Accili D (2001) Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev 22(6):818–835PubMedCrossRefGoogle Scholar
  55. Nalloor R, Bunting KM, Vazdarjanova A (2012) Encoding of emotion-paired spatial stimuli in the rodent hippocampus. Front Behav Neurosci 6:27. doi:10.3389/fnbeh.2012.00027 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Navarro I, Leibush B, Moon TW, Plisetskaya EM, Banos N, Mendez E, Planas JV, Gutierrez J (1999) Insulin, insulin-like growth factor-I (IGF-I) and glucagon: the evolution of their receptors. Comp Biochem Physiol B Biochem Mol Biol 122(2):137–153PubMedCrossRefGoogle Scholar
  57. Needleman LA, McAllister AK (2008) Seeing the light: insulin receptors and the CNS. Neuron 58(5):653–655. doi:10.1016/j.neuron.2008.06.001 PubMedCrossRefGoogle Scholar
  58. Nelson TJ, Sun MK, Hongpaisan J, Alkon DL (2008) Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 585(1):76–87. doi:10.1016/j.ejphar.2008.01.051 PubMedCrossRefGoogle Scholar
  59. Ormerod BK, Lee TT, Galea LA (2004) Estradiol enhances neurogenesis in the dentate gyri of adult male meadow voles by increasing the survival of young granule neurons. Neuroscience 128(3):645–654. doi:10.1016/j.neuroscience.2004.06.039 PubMedCrossRefGoogle Scholar
  60. Ormerod BK, Palmer TD, Caldwell MA (2008) Neurodegeneration and cell replacement. Philos Trans R Soc Lond B Biol Sci 363(1489):153–170. doi:10.1098/rstb.2006.2018 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Pawluski JL, Brummelte S, Barha CK, Crozier TM, Galea LA (2009) Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front Neuroendocrinol 30(3):343–357. doi:10.1016/j.yfrne.2009.03.007 PubMedCrossRefGoogle Scholar
  62. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates. Elsevier, New YorkGoogle Scholar
  63. Perfilieva E, Risedal A, Nyberg J, Johansson BB, Eriksson PS (2001) Gender and strain influence on neurogenesis in dentate gyrus of young rats. J Cereb Blood Flow Metab 21(3):211–217. doi:10.1097/00004647-200103000-00004 PubMedCrossRefGoogle Scholar
  64. Plum L, Schubert M, Bruning JC (2005) The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16(2):59–65. doi:10.1016/j.tem.2005 PubMedCrossRefGoogle Scholar
  65. Ragbetli MC, Aydinlioglu A, Kaplan S (2002) Sex differences and right–left asymmetries in rat hippocampal components. Int J Neurosci 112(1):81–95PubMedGoogle Scholar
  66. Ramachandra R, Thyagarajan S (2011) Atlas of the neonatal rat brain. CRC Press, Bosa RocaCrossRefGoogle Scholar
  67. Reagan LP (2007) Insulin signaling effects on memory and mood. Curr Opin Pharmacol 7(6):633–637. doi:10.1016/j.coph.2007.10.012 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Roof RL, Havens MD (1992) Testosterone improves maze performance and induces development of a male hippocampus in females. Brain Res 572(1–2):310–313PubMedGoogle Scholar
  69. Schechter R, Whitmire J, Holtzclaw L, George M, Harlow R, Devaskar SU (1992) Developmental regulation of insulin in the mammalian central nervous system. Brain Res 582(1):27–37PubMedGoogle Scholar
  70. Schlessinger AR, Cowan WM, Gottlieb DI (1975) An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol 159(2):149–175. doi:10.1002/cne.901590202 PubMedCrossRefGoogle Scholar
  71. Takahashi R, Ishii K, Kakigi T, Yokoyama K (2011) Gender and age differences in normal adult human brain: voxel-based morphometric study. Hum Brain Mapp 32(7):1050–1058. doi:10.1002/hbm.21088 PubMedCrossRefGoogle Scholar
  72. Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, Cusick A, Riley ZL, Sunkin SM, Bernard A, Puchalski RB, Gage FH, Jones AR, Bajic VB, Hawrylycz MJ, Lein ES (2008) Genomic anatomy of the hippocampus. Neuron 60(6):1010–1021. doi:10.1016/j.neuron.2008.12.008 PubMedCrossRefGoogle Scholar
  73. Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4(1):37–48. doi:10.1038/nrn1009nrn1009 PubMedCrossRefGoogle Scholar
  74. von Wilmsdorff M, Sprick U, Bouvier ML, Schulz D, Schmitt A, Gaebel W (2010) Sex-dependent behavioral effects and morphological changes in the hippocampus after prenatal invasive interventions in rats: implications for animal models of schizophrenia. Clinics (Sao Paulo) 65(2):209–219. doi:10.1590/S1807-59322010000200014 Google Scholar
  75. Werther GA, Hogg A, Oldfield BJ, McKinley MJ, Figdor R, Allen AM, Mendelsohn FA (1987) Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121(4):1562–1570PubMedCrossRefGoogle Scholar
  76. Wozniak M, Rydzewski B, Baker SP, Raizada MK (1993) The cellular and physiological actions of insulin in the central nervous system. Neurochem Int 22(1):1–10PubMedCrossRefGoogle Scholar
  77. Wrighten SA, Piroli GG, Grillo CA, Reagan LP (2009) A look inside the diabetic brain: contributors to diabetes-induced brain aging. Biochim Biophys Acta 1792(5):444–453. doi:10.1016/j.bbadis.2008.10.013 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Xiao L, Jordan CL (2002) Sex differences, laterality, and hormonal regulation of androgen receptor immunoreactivity in rat hippocampus. Horm Behav 42(3):327–336PubMedCrossRefGoogle Scholar
  79. Zalutsky RA, Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248(4963):1619–1624PubMedCrossRefGoogle Scholar
  80. Zhang JM, Konkle AT, Zup SL, McCarthy MM (2008) Impact of sex and hormones on new cells in the developing rat hippocampus: a novel source of sex dimorphism? Eur J Neurosci 27(4):791–800. doi:10.1111/j.1460-9568.2008.06073.x PubMedCentralPubMedCrossRefGoogle Scholar
  81. Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177(1–2):125–134PubMedCrossRefGoogle Scholar
  82. Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274(49):34893–34902PubMedCrossRefGoogle Scholar
  83. Zhao WQ, Chen H, Quon MJ, Alkon DL (2004) Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol 490(1–3):71–81. doi:10.1016/j.ejphar.2004.02.045 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Anatomical SciencesSchool of Medicine, Birjand University of Medical SciencesBirjandIran
  2. 2.Hazrat Rasoul Akram HospitalTehran University of Medical SciencesTehranIran
  3. 3.Department of Anatomy and Cell BiologySchool of Medicine, Mashhad University of Medical Sciences (MUMS)MashhadIran
  4. 4.Medical Genetic Research Center (MGRC)School of Medicine, Mashhad University of Medical SciencesMashhadIran

Personalised recommendations