Journal of Molecular Neuroscience

, Volume 54, Issue 1, pp 59–70 | Cite as

Brain Network Activation (BNA) Reveals Scopolamine-Induced Impairment of Visual Working Memory

  • Amit Reches
  • Naama Levy-Cooperman
  • Ilan Laufer
  • Revital Shani-Hershkovitch
  • Keren Ziv
  • Dani Kerem
  • Noga Gal
  • Yaki Stern
  • Guy Cukierman
  • Myroslava K. Romach
  • Edward M. Sellers
  • Amir B. Geva
Article

Abstract

The overarching goal of this event-related potential (ERP) study was to examine the effects of scopolamine on the dynamics of brain network activation using a novel ERP network analysis method known as Brain Network Activation (BNA). BNA was used for extracting group-common stimulus-activated network patterns elicited to matching probe stimuli in the context of a delayed matching-to-sample task following placebo and scopolamine treatments administered to healthy participants. The BNA extracted networks revealed the existence of two pathophysiological mechanisms following scopolamine, disconnection, and compensation. Specifically, weaker frontal theta and parietal alpha coupling was accompanied with enhanced fronto-centro-parietal theta activation relative to placebo. In addition, using the characteristic BNA network of each treatment as well as corresponding literature-guided selective subnetworks as combined biomarkers managed to differentiate between individual responses to each of the treatments. Behavioral effects associated with scopolamine included delayed response time and impaired response accuracy. These results indicate that the BNA method is sensitive to the effects of scopolamine on working memory and that it may potentially enable diagnosis and treatment assessment of dysfunctions associated with cholinergic deficiency.

Keywords

Brain Network Activation (BNA) Scopolamine Cholinergic hypothesis Working memory (WM) Dementia Event-related potentials (ERPs) 

References

  1. Aggelopoulos NC, Liebe S, Logothetis NK, Rainer G (2011) Cholinergic control of visual categorization in macaques. Front Behav Neurosci 5:73. doi:10.3389/fnbeh.2011.00073 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Araujo JA, Chan AD, Winka LL, Seymour PA, Milgram NW (2004) Dose-specific effects of scopolamine on canine cognition: impairment of visuospatial memory, but not visuospatial discrimination. Psychopharmacology (Berl) 175:92–98CrossRefGoogle Scholar
  3. Bankó EM, Vidnyánszky Z (2010) Retention interval affects visual short-term memory encoding. J Neurophysiol 103:1425–1430PubMedCrossRefGoogle Scholar
  4. Başar E (2004) Macrodynamics of electrical activity in the whole brain. Int J Bifurcat Chaos 14:363–381CrossRefGoogle Scholar
  5. Bentin S, Allison T, Puce A, Perez E (1996) Electrophysiological studies of face perception in humans. J Cogn Neurosci 8:551–565PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bentin S, Deouell LY (2000) Structural encoding and identification in face processing: ERP evidence for separate mechanisms. Cogn Neuropsychol 15:35–54CrossRefGoogle Scholar
  7. Blokland A (2005) Scopolamine-induced deficits in cognitive performance: a review of animal studies. Scopolamine Rev 1–76Google Scholar
  8. Brandeis D, Naylor H, Halliday R, Callaway E, Yano L (1992) Scopolamine effects on visual information processing, attention and event-related potential map latencies. Psychphysiology 29:315–336CrossRefGoogle Scholar
  9. Brandt J (1991) The Hopkins Verbal Learning Test: development of a new memory test with six equivalent forms. Clin Neurophysiol 5:125–142Google Scholar
  10. Buccafusco JJ, Terry AV Jr, Webster SJ et al (2008) The scopolamine-reversal paradigm in rats and monkeys: the importance of computer assisted operant-conditioning memory tasks for screening drug candidates. Psychopharmacology (Berl) 199:481–494CrossRefGoogle Scholar
  11. Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44:195–208PubMedCrossRefGoogle Scholar
  12. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Earlbaum Associates, Hillsdale, NJGoogle Scholar
  13. Contestabile A (2011) The history of the cholinergic hypothesis. Behav Brain Res 221:334–340PubMedCrossRefGoogle Scholar
  14. Dimitriadis SI, Laskaris NA, Tzelepi A, Economou G (2012) Analyzing functional brain connectivity by means of commute times: a new approach and its application to track event-related dynamics. IEEE Trans Biomed Eng 59:1302–1309PubMedCrossRefGoogle Scholar
  15. Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Invest 28:944–949PubMedCrossRefGoogle Scholar
  16. Ebert U, Siepmann MD, Oertel R, Wesnes KA, Kirch W (1998) Pharmacokinetics and pharmacodynamics of scopolamine after subcutaneous administration. J Clin Pharmacol 38:720–726PubMedCrossRefGoogle Scholar
  17. Fell J, Dietl T, Grunwald T et al (2004) Neural bases of cognitive ERPs: more than phase reset. J Cogn Neurosci 16:1595–1604PubMedCrossRefGoogle Scholar
  18. Fell J, Ludowig E, Staresina BP et al (2011) Medial temporal theta/alpha power enhancement precedes successful memory encoding: evidence based on intracranial EEG. J Neurosci 31:5392–5397PubMedCrossRefGoogle Scholar
  19. Finnigan S, O'Connell RG, Cummins TD, Broughton M, Robertson IH (2011) ERP measures indicate both attention and working memory encoding decrements in aging. Psychophysiology 48:601–611PubMedCrossRefGoogle Scholar
  20. Fransén E, Alonso AA, Hasselmo ME (2002) Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation current INCM in entorhinal neuronal activity during delayed matching tasks. J Neurosci 22:1081–1097PubMedGoogle Scholar
  21. Fredrickson A, Snyder PJ, Cromer J, Thomas E, Lewis M, Maruff P (2008) The use of effect sizes to characterize the nature of cognitive change in psychopharmacological studies: an example with scopolamine. Hum Psychopharmacol 23:425–436PubMedCrossRefGoogle Scholar
  22. Furey ML, Pietrini P, Haxby JV (2000) Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science 290:2315–2319PubMedCrossRefGoogle Scholar
  23. Gazzaley A, Clapp W, Kelley J, McEvoy K, Knight RT, D'Esposito M (2008) Age-related top-down suppression deficit in the early stages of cortical visual memory processing. PNAS 105:13122–13126PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gevins A, Cutillo B (1993) Spatiotemporal dynamics of component processes in human working memory. Electroencephalogr Clin Neurophysiol 87:128–143PubMedCrossRefGoogle Scholar
  25. Gevins AS, Doyle JC, Cutillo BA et al (1981) Electrical potentials in human brain during cognition: new method reveals dynamic patterns of correlation. Science 213:918–922PubMedCrossRefGoogle Scholar
  26. Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7:374–835PubMedCrossRefGoogle Scholar
  27. Giessing C, Thiel CM (2012) Pro-cognitive drug effects modulate functional brain network organization. Front Behav Neurosci 6:53. doi:10.3389/fnbeh.2012.00053 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Grady CL, Furey ML, Pietrini P, Horwitz B, Rapoport SI (2001) Altered brain functional connectivity and impaired short-term memory in Alzheimer’s disease. Brain 124:739–756PubMedCrossRefGoogle Scholar
  29. Harding GF, Daniels R, Panchal S, Drasdo N, Anderson SJ (1994) Visual evoked potentials to flash and pattern reversal stimulation after administration of systemic or topical scopolamine. Doc Ophthalmol 86:311–322PubMedCrossRefGoogle Scholar
  30. Ioannides AA, Dimitriadis SI, Saridis GA (2012) Source space analysis of event-related dynamic reorganization of brain networks. Comput Math Methods Med 2012:452503. doi:10.1155/2012/452503 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Itier RJ, Taylo MJ (2002) Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: a repetition study using ERPs. Neuroimage 15:353–372PubMedCrossRefGoogle Scholar
  32. Itier RJ, Taylor MJ (2004) N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cereb Cortex 14:132–142PubMedCrossRefGoogle Scholar
  33. Jensen O, Lisman JE (1998) An oscillatory short-term memory buffer model can account for data on the Sternberg task. J Neurosc 18:10688–10699Google Scholar
  34. Kaufmann JM, Schweinberger SR, Burton AM (2009) N250 ERP correlates of the acquisition of face representations across different images. J Cogn Neurosci 21:625–641PubMedCrossRefGoogle Scholar
  35. Kawasaki M, Kitajo K, Yamaguchi Y (2010) Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory. Eur J Neurosci 31:1683–1689PubMedCentralPubMedGoogle Scholar
  36. Kikuchi M, Wada Y, Nanbu Y et al (1999) EEG changes following scopolamine administration in healthy subjects. Quantitative analysis during rest and photic stimulation. Neuropsychobiology 39:219–226PubMedCrossRefGoogle Scholar
  37. Klimesch W, Fellinger R, Freunberger R (2011) Alpha oscillations and early stages of visual encoding. Front Psychol 2:118. doi:10.3389/fpsyg.2011.00118 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Koller G, Satzger W, Adam M et al (2003) Effects of scopolamine on matching to sample paradigm and related tests in human subjects. Neuropsychobiology 48:87–94PubMedCrossRefGoogle Scholar
  39. Liu J, Higuchi M, Marantz A, Kanwisher N (2000) The selectivity of the occipitotemporal M170 for faces. Neuroreport 11:337–341PubMedCrossRefGoogle Scholar
  40. Luo W, Feng W, He W, Wang NY, Luo YJ (2010) Three stages of facial expression processing: ERP study with rapid serial visual presentation. Neuroimage 49:1857–1867PubMedCentralPubMedCrossRefGoogle Scholar
  41. Makeig S, Bell AJ, Jung TP, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. Adv Neural Inf Process Syst 8:145–151Google Scholar
  42. Meador K, Loring DW, Hendrix N, Nichols ME, Oberzan R, Moore EE (1995) Synergistic anticholinergic and antiserotonergic effects in humans. J Clin Exp Neuropsychol 17:611–621PubMedCrossRefGoogle Scholar
  43. Meador KJ, Loring DW, Adams RJ, Patel BR, Davis HC, Hammond EJ (1987) Central cholinergic systems and the P3 evoked potential. Int J Neurosci 33:199–205PubMedGoogle Scholar
  44. Meador KJ, Loring DW, Davis HC et al (1989) Cholinergic and serotonergic effects on the P3 potential and recent memory. J Clin Exp Neuropsychol 11:252–260PubMedCrossRefGoogle Scholar
  45. Miller BT, Deouell LY, Dam C, Knight RT, D'Esposito M (2008) Spatio-temporal dynamics of neural mechanisms underlying component operations in working memory. Brain Res 1206:61–75PubMedCentralPubMedGoogle Scholar
  46. Montez T, Poil SS, Jones BF et al (2009) Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc Natl Acad Sci U S A 106:1614–1619PubMedCentralPubMedCrossRefGoogle Scholar
  47. Moran RJ, Campo P, Maestu F, Reilly RB, Dolan RJ, Strange BA (2010) Peak frequency in the theta and alpha bands correlates with human working memory capacity. Front Hum Neurosci 4:200. doi:10.3389/fnhum.2010.00200 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during working memory. Neuroimage 27:341–356PubMedCrossRefGoogle Scholar
  49. Payne L, Kounios J (2009) Coherent oscillatory networks supporting short-term memory retention. Brain Res 1247:126–132PubMedCentralPubMedGoogle Scholar
  50. Pekkonen E, Hirvonen J, Jääskeläinen IP, Kaakkola S, Huttunen J (2001) Auditory sensory memory and the cholinergic system: implications for Alzheimer’s disease. Neuroimage 14:376–382PubMedCrossRefGoogle Scholar
  51. Petrek J (2008) Pictorial cognitive task resolution and dynamics of event-related potentials. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152:223–230PubMedCrossRefGoogle Scholar
  52. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Machine Intell 22:1090–1104CrossRefGoogle Scholar
  53. Plakke B, Ng CW, Poremba A (2008) Scopolamine impairs auditory delayed matching-to-sample performance in monkeys. Neurosci Lett 438:126–130PubMedCentralPubMedCrossRefGoogle Scholar
  54. Polikar R, Topalis A, Green D, Kounios J, Clark CM (2007) Comparative multiresolution wavelet analysis of ERP spectral bands using an ensemble of classifiers approach for early diagnosis of Alzheimer's disease. Comput Biol Med 37:542–558PubMedCentralPubMedCrossRefGoogle Scholar
  55. Potter DD, Pickles CD, Roberts RC, Rugg MD (2000) Scopolamine impairs memory performance and reduces frontal but not parietal visual P3 amplitude. Biol Psychol 52:37–52PubMedCrossRefGoogle Scholar
  56. Raghavachari S, Kahana M, Rizzuto DS et al (2001) Gating of human theta oscillations by a working memory task. Neurosciences 21:3175–3183Google Scholar
  57. Rebai M, Poiroux S, Bernard C, Lalonde R (2001) Event-related potentials for category-specific information during passive viewing of faces and objects. Int J Neurosci 106:209–226PubMedGoogle Scholar
  58. Reches A, Kerem D, Gal N et al (2013a) A novel ERP pattern analysis method for revealing invariant reference brain network model. Funct Neurol Rehabil Ergon 3:295–317Google Scholar
  59. Reches A, Laufer I, Ziv K et al (2013b) Network dynamics predict improvement in working memory performance following donepezil administration in healthy young adults. NeuroImage. doi:10.1016/j.neuroimage.2013.11.020 Google Scholar
  60. Robbins TW, Semple J, Kumar R et al (1997) Effects of scopolamine on delayed-matching-to-sample and paired associates tests of visual memory and learning in human subjects: comparison with diazepam and implications for dementia. Psychopharmacology 134:95–106PubMedCrossRefGoogle Scholar
  61. Rodriguez G, Arnaldi D, Picco A (2011) Brain functional network in Alzheimer's disease: diagnostic markers for diagnosis and monitoring. Int J Alzheimers Dis 2011:481903. doi:10.4061/2011/481903 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Sams M, Hietanen JK, Hari R, Ilmoniemi RJ, Lounasmaa OV (1997) Face-specific responses from the human inferior occipito-temporal cortex. Neuroscience 77:49–55PubMedCrossRefGoogle Scholar
  63. Sannita WG, Balestra V, DiBon G, Marotta V, Rosadini G (1993) Human flash-VEP and quantitative EEG are independently affected by acute scopolamine. Electroencephalogr Clin Neurophysiol 86:275–282PubMedCrossRefGoogle Scholar
  64. Sauseng P, Klimesch W, Gruber W, Doppelmayr M, Stadler W, Schabus M (2002) The interplay between theta and alpha oscillations in the human electroencephalogram reflects the transfer of information between memory systems. Neurosci Lett 324:121–124PubMedCrossRefGoogle Scholar
  65. Sauseng P, Klimesch W, Schabus M, Doppelmayr M (2005) Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol 57:97–103PubMedCrossRefGoogle Scholar
  66. Schack B, Klimesch W, Sauseng P (2005) Phase synchronization between theta and upper alpha oscillations in a working memory task. Int J Psychophysiol 57:105–114PubMedCrossRefGoogle Scholar
  67. Schinkel S, Marwan N, Kurths J (2007) Order patterns recurrence plots in the analysis of ERP data. Cogn Neurodyn 1:317–325PubMedCentralPubMedCrossRefGoogle Scholar
  68. Schon K, Atri A, Hasselmo ME, Tricarico MD, LoPresti ML, Stern CE (2005) Scopolamine reduces persistent activity related to long-term encoding in the parahippocampal gyrus during delayed matching in humans. J Neurosci 25:9112–9123PubMedCrossRefGoogle Scholar
  69. Schweinberger SR, Huddy V, Burton AM (2004) N250r: a face-selective brain response to stimulus repetitions. Neuroreport 15:1501–1505PubMedCrossRefGoogle Scholar
  70. Shahaf G, Reches A, Pinchuk N et al (2012) Introducing a novel approach of network oriented analysis of ERPs, demonstrated on adult attention deficit hyperactivity disorder. Clin Neurophysiol 123:1568–1580PubMedCrossRefGoogle Scholar
  71. Shapiro AM, Benedict RH, Schretlen D, Brandt J (1999) Construct and concurrent validity of the Hopkins Verbal Learning Test-Revised. Clin Neuropsychol 13:348–358PubMedCrossRefGoogle Scholar
  72. Skrandies W (2005) Brain mapping of visual evoked activity—topographical and functional components. Acta Neurol Taiwan 14:164–178PubMedGoogle Scholar
  73. Snyder PJ, Bednar MM, Cromer JR, Maruff P (2005) Reversal of scopolamine-induced deficits with a single dose of donepezil, an acetylcholinesterase inhibitor. Alzheimers Dement 1:126–135PubMedCrossRefGoogle Scholar
  74. Sperling R, Greve D, Dale A et al (2002) Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci U S A 99:455–460PubMedCentralPubMedCrossRefGoogle Scholar
  75. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1:3PubMedCentralPubMedCrossRefGoogle Scholar
  76. Sternberg S (1969) Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci 57:421–457PubMedGoogle Scholar
  77. Tanaka JW, Curran T, Porterfield AL, Collins D (2006) Activation of pre-existing and acquired face representations: the N250 ERP as an index of face familiarity. J Cogn Neurosci 18:1488–1497PubMedCrossRefGoogle Scholar
  78. Terry AV Jr (2006) Muscarinic receptor antagonists in rats. In: Levin E.D. and Buccafusco JJ (eds) Animal Models of Cognitive Impairment, Chapter 2. CRC Press, Boca Raton, FL. Available from http://www.ncbi.nlm.nih.gov/books/NBK2525/
  79. Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827PubMedCrossRefGoogle Scholar
  80. Yener GG, Başar E (2010) Sensory evoked and event related oscillations in Alzheimer's disease: a short review. Cogn Neurodyn 4:263–274PubMedCentralPubMedCrossRefGoogle Scholar
  81. Yener GG, Güntekin B, Tülay E, Başar E (2009) A comparative analysis of sensory visual evoked oscillations with visual cognitive event related oscillations in Alzheimer's disease. Neurosci Lett 462:193–197PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Amit Reches
    • 1
  • Naama Levy-Cooperman
    • 2
  • Ilan Laufer
    • 1
  • Revital Shani-Hershkovitch
    • 1
  • Keren Ziv
    • 1
  • Dani Kerem
    • 1
  • Noga Gal
    • 1
  • Yaki Stern
    • 1
  • Guy Cukierman
    • 1
  • Myroslava K. Romach
    • 3
    • 4
  • Edward M. Sellers
    • 3
    • 4
  • Amir B. Geva
    • 1
    • 5
  1. 1.ElMindA LtdHerzliyaIsrael
  2. 2.INC ResearchTorontoCanada
  3. 3.Department of PsychiatryUniversity of TorontoTorontoCanada
  4. 4.DL Global Partners IncTorontoCanada
  5. 5.Electrical and Computer EngineeringBen Gurion University of the NegevBeershebaIsrael

Personalised recommendations