Journal of Molecular Neuroscience

, Volume 54, Issue 1, pp 49–58 | Cite as

Endocannabinoid 2-Arachidonylglycerol Protects Primary Cultured Neurons Against LPS-Induced Impairments in Rat Caudate Nucleus



Inflammation plays a pivotal role in the pathogenesis of many diseases in the central nervous system. Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders. 2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid and the true natural ligand for CB1 receptors, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in hippocampus. However, it is still not clear whether 2-AG is also able to protect CN neurons from proinflammation stimuli. In the present study, we discovered that 2-AG significantly protects CN neurons in culture against lipopolysaccharide (LPS)-induced inflammatory response. 2-AG is capable of suppressing elevation of LPS-induced cyclooxygenase-2 expression associated with ERK/p38MAPK/NF-κB signaling pathway in CB1 receptor-dependant manner in primary cultured CN neurons. Moreover, 2-AG inhibits LPS-induced increase in voltage-gated sodium channel currents and hyperpolarizing shift of activation curves through CB1 receptor-dependant pathway. Our study suggests the therapeutic potential of 2-AG for the treatment of some inflammation-induced neurological disorders and pain.


Endocannabinoid Caudate nucleus (CN) 2-Arachidonoylglycerol (2-AG) Lipopolysaccharide (LPS) Cannabinoid receptor Sodium channel 


  1. Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P et al (2006) The role of sodium channels in chronic inflammatory and neuropathic pain. J Pain 7:S1–S29PubMedCrossRefGoogle Scholar
  2. Aoki T, Narumiya S (2012) Prostaglandins and chronic inflammation. Trends Pharmacol Sci 33:304–311PubMedCrossRefGoogle Scholar
  3. Araldi D, Ferrari LF, Lotufo CM, Vieira AS, Athié MC, Figueiredo JG et al (2013) Peripheral inflammatory hyperalgesia depends on the COX increase in the dorsal root ganglion. Proc Natl Acad Sci U S A 110:3603–3608PubMedCentralPubMedCrossRefGoogle Scholar
  4. Barnéoud P, Mazadier M, Miquet JM, Parmentier S, Dubédat P, Doble A et al (1996) Neuroprotective effects of riluzole on a model of Parkinson’s disease in the rat. Neuroscience 74:971–983PubMedCrossRefGoogle Scholar
  5. Black JA, Liu S, Tanaka M, Cummins TR, Waxman SG (2004) Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 108:237–247PubMedCrossRefGoogle Scholar
  6. Brück A, Portin R, Lindell A, Laihinen A, Bergman J, Haaparanta M et al (2001) Positron emission tomography shows that impaired frontal lobe functioning in Parkinson’s disease is related to dopaminergic hypofunction in the caudate nucleus. Neurosci Lett 311:81–84PubMedCrossRefGoogle Scholar
  7. Chang YH, Lee ST, Lin WW (2001) Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids. J Cell Biochem 81:715–723PubMedCrossRefGoogle Scholar
  8. Chen X, Zhang J, Chen C (2011) Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults. Neuroscience 178:159–168PubMedCentralPubMedCrossRefGoogle Scholar
  9. Docherty RJ, Farmer CE (2009) The pharmacology of voltage-gated sodium channels in sensory neurones. Handb Exp Pharmacol 194:519–561PubMedCrossRefGoogle Scholar
  10. Duan Y, Zheng J, Nicholson RA (2008) Inhibition of [3H]batrachotoxinin A-20alpha-benzoate binding to sodium channels and sodium channel function by endocannabinoids. Neurochem Int 52:438–446PubMedCrossRefGoogle Scholar
  11. Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S et al (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49:67–79PubMedCrossRefGoogle Scholar
  12. England S, Bevan S, Docherty RJ (1996) PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol 495:429–440PubMedCentralPubMedGoogle Scholar
  13. Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066PubMedGoogle Scholar
  14. Gold MS, Reichling DB, Shuster MJ, Levine JD (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci U S A 93:1108–1112PubMedCentralPubMedCrossRefGoogle Scholar
  15. Hillard CJ (2000) Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol. Prostaglandins Other Lipid Mediat 61:3–18PubMedCrossRefGoogle Scholar
  16. Jain NK, Patil CS, Kulkarni SK, Singh A (2002) Modulatory role of cyclooxygenase inhibitors in aging- and scopolamine or lipopolysaccharide-induced cognitive dysfunction in mice. Behav Brain Res 133:369–376PubMedCrossRefGoogle Scholar
  17. Jung GY, Lee JY, Rhim H, Oh TH, Yune TY (2013) An increase in voltage-gated sodium channel current elicits microglial activation followed inflammatory responses in vitro and in vivo after spinal cord injury. Glia 61:1807–1821PubMedGoogle Scholar
  18. Ke Y, Song WW, Dong MM, Peng F, Yang HW (2013) Cyclooxgense-2 mediated antagonised effect of curcumin on LPS induced impairment of neurons in caudate nucleus. Lishizhen Med Mater Med Res 24:2590–2592Google Scholar
  19. Korotzer AR, Cotman CW (1992) Voltage-gated currents expressed by rat microglia in culture. Glia 6:81–88PubMedCrossRefGoogle Scholar
  20. Kotz SA, Anwander A, Axer H, Knösche TR (2013) Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus. PLoS One 8:e70141PubMedCentralPubMedCrossRefGoogle Scholar
  21. Luchicchi A, Pistis M (2012) Anandamide and 2-arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. Mol Neurobiol 46:374–392PubMedCrossRefGoogle Scholar
  22. Lynch AM, Walsh C, Delaney A, Nolan Y, Campbell VA, Lynch MA (2004) Lipopolysaccharide-induced increase in signalling in hippocampus is abrogated by IL-10—a role for IL-1 beta? J Neurochem 88:635–646PubMedCrossRefGoogle Scholar
  23. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90PubMedCrossRefGoogle Scholar
  24. Okada Y, Imendra KG, Miyazaki T, Hotokezaka H, Fujiyama R, Zeredo JL et al (2005) Biophysical properties of voltage-gated Na+ channels in frog parathyroid cells and their modulation by cannabinoids. J Exp Biol 208:4747–4756PubMedCrossRefGoogle Scholar
  25. Oz M (2006) Receptor-independent actions of cannabinoids on cell membranes: focus on endocannabinoids. Pharmacol Ther 111:114–144PubMedCrossRefGoogle Scholar
  26. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R et al (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531PubMedCrossRefGoogle Scholar
  27. Panikashvili D, Shein NA, Mechoulam R, Trembovler V, Kohen R, Alexandrovich A et al (2006) The endocannabinoid 2-AG protects the blood-brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol Dis 22:257–264PubMedCrossRefGoogle Scholar
  28. Peng F, LU YL, Yang HW (2012) Primary culture of neurons from caudate nucleus and study on the characteristics of ion channels. J Chin Med Univ 41:676–678Google Scholar
  29. Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51PubMedCrossRefGoogle Scholar
  30. Pertwee RG (2010) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem 17:1360–1381PubMedCentralPubMedCrossRefGoogle Scholar
  31. Sprengelmeyer R, Canavan AG, Lange HW, Hömberg V (1995) Associative learning in degenerative neostriatal disorders: contrasts in explicit and implicit remembering between Parkinson’s and Huntington’s diseases. Mov Disord 10:51–65PubMedCrossRefGoogle Scholar
  32. Sugiura T, Waku K (2002) Cannabinoid receptors and their endogenous ligands. J Biochem 132:7–12PubMedCrossRefGoogle Scholar
  33. Sugiura T, Kishimoto S, Oka S, Gokoh M (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45:405–446PubMedCrossRefGoogle Scholar
  34. Tanaka M, Cummins TR, Ishikawa K, Dib-Hajj SD, Black JA, Waxman SG (1998) SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. Neuroreport 9:967–972PubMedCrossRefGoogle Scholar
  35. Walter L, Stella N (2004) Cannabinoids and neuroinflammation. Br J Pharmacol 14:775–785Google Scholar
  36. Waxman SG, Cummins TR, Dib-Hajj S, Fjell J, Black JA (1999) Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain. Muscle Nerve 22:1177–1187PubMedCrossRefGoogle Scholar
  37. Williams AJ, Tortella FC (2002) Neuroprotective effects of the sodium channel blocker RS100642 and attenuation of ischemia-induced brain seizures in the rat. Brain Res 932:45–55PubMedCrossRefGoogle Scholar
  38. Yang H, Chen C (2008) Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des 14:1443–1451PubMedCentralPubMedCrossRefGoogle Scholar
  39. Zhang J, Chen C (2008) Endocannabinoid 2-arachidonoylglycerol protects neurons by limiting COX-2 elevation. J Biol Chem 283:22601–22611PubMedCentralPubMedCrossRefGoogle Scholar
  40. Zogopoulos P, Vasileiou I, Patsouris E, Theocharis S (2013) The neuroprotective role of 1endocannabinoids against chemical-induced injury and other adverse effects. J Appl Toxicol 33:246–264PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yongli Lu
    • 1
  • Fang Peng
    • 1
  • Manman Dong
    • 1
  • Hongwei Yang
    • 1
  1. 1.Department of Physiology, College of Medical ScienceChina Three Gorges UniversityYichangPeople’s Republic of China

Personalised recommendations