A Primary Study on Down-Regulated miR-9-1 and Its Biological Significances in Methylmalonic Acidemia

Abstract

Methylmalonic acidemia (MMA) is a metabolic disorder, which is caused by a deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase. MMA diagnosis is dependent on the method of gas chromatography–mass spectrometry, which is expensive, complicated, and time consuming. Currently, microRNAs (miRNAs) have gained considerable interest for its function as a novel class of non-invasive and sensitive biomarkers for the diagnosis of diseases. However, there has been no related report regarding its role in MMA. Our study first detected differentially expressed microRNAs in MMA and found that the expression of miR-9-1 was significantly down-regulated and changed sensitively after VitB12 treatment. Furthermore, we confirmed that miR-9-1 was able to suppress neuronal apoptosis induced by methylmalonate. Taken together, our results suggested that miR-9-1 may act as a potential biomarker for the diagnosis and monitoring of changes in MMA and provide new insights into the pathogenesis of MMA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bazzoni F, Rossato M, Fabbri M et al (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad U S A 106(13):5282–5287

    CAS  Article  Google Scholar 

  2. Brusque AM, Borba Rosa R, Schuck PF et al (2002) Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 40(7):593–601

    CAS  PubMed  Article  Google Scholar 

  3. Carrillo-Carrasco N, Venditti CP (2012) Combined methylmalonic acidemia and homocystinuria, cblC type. II. Complications, pathophysiology, and outcomes. J Inherit Metab Dis 35(1):103–14

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C (2006) Methylmalonic and propionic aciduria. Am J Med Genet C: Semin Med Genet 142C:104–112

    CAS  Article  Google Scholar 

  5. Fernandes CG, Borges CG, Seminotti B et al (2011) Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol neurobiol 31(5):775–785

    CAS  PubMed  Article  Google Scholar 

  6. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Han LS, Ye J, Qiu WJ et al (2007) Selective screening for inborn errors of metabolism on clinical patients using tandem mass spectrometry in China: a four-year report. J Inherit Metab Dis 30(4):507–514

    CAS  PubMed  Article  Google Scholar 

  8. Jin XF, Wu N, Wang L, Li J (2013) Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cell Mol Neurobiol 33(5):601–613

    CAS  PubMed  Article  Google Scholar 

  9. Jing L, Jia Y, Lu J, Han R, Li J, Wang S et al (2011) MicroRNA-9 promotes differentiation of mouse bone MSCs into neurons via Notch signaling. Neuroreport 22(5):206–211

    CAS  PubMed  Article  Google Scholar 

  10. Jones SW, Watkins G, Le Good N et al (2009) The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr Cartil 17(4):464–472

    CAS  PubMed  Article  Google Scholar 

  11. Kaneko Y, Wu GS, Saraswathy S, Vasconcelos-Santos DV, Rao NA (2012) Immunopathologic processes in sympathetic ophthalmia as signified by microRNA profiling. Invest Ophthalmol Vis Sci 53(7):4197–4204

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Kim DJ, Linnstaedt S, Palma J et al (2011) Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagn 14(1):71–80

    CAS  PubMed  Article  Google Scholar 

  13. Liu GD, Zhang H, Wang L, Han Q, Zhou SF, Liu P (2013) Molecular hydrogen regulates the expression of miR-9, miR-21 and miR-199 in LPS-activated retinal microglia cells. Int J Ophthalmol 6(3):280–285

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 1:S232–240

    Google Scholar 

  15. Mc Guire PJ, Parikh A, Diaz GA (2009) Profiling of oxidative stress in patients with inborn errors of metabolism. Mol Genet Metab 98(1–2):173–180

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. McLaughlin BA, Nelson D, Sliver IA, Erecinska M, Chesselet MF (1998) Methylmalonate toxicity in primary neuronal cultures. Neuroscience 86(1):279–290

    CAS  PubMed  Article  Google Scholar 

  17. Melo DR, Kowaltowski AJ, Wajner M, Castilho RF (2011) Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 43(1):39–46

    CAS  PubMed  Article  Google Scholar 

  18. Okada Y, Kato M, Minakami H, Inoue Y, Morikawa A, Otsuki K et al (2001) Reduced expression of flice-inhibitory protein (FLIP) and NF kappaB is associated with death receptor-induced cell death in human aortic endothelial cells (HAECs). Cytokine 15(2):66–74

    CAS  PubMed  Article  Google Scholar 

  19. Ribeiro LR, Della-Pace ID, de Oliveira Ferreira AP et al (2013) Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology 218(9):1175–1183

    CAS  PubMed  Article  Google Scholar 

  20. Richard E, Alvarez-Barrientos A, Pérez B, Desviat LR, Ugarte M (2007) Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol 213(4):453–461

    CAS  PubMed  Article  Google Scholar 

  21. Richard E, Jorge-Finnigan A, Garcia-Villoria J, Merinero B et al (2009) Genetic and cellular studies of oxidative stress in methylmalonic aciduria (MMA) cobalamin deficiency type C (cblC) with homocystinuria (MMACHC). Hum Mutat 30(11):1558–1566

    CAS  PubMed  Article  Google Scholar 

  22. Shibata K, Shimokawa H, Yanagihara N, Otsuji Y, Tsutsui M (2013) Nitric oxide synthases and heart failure—lessons from genetically manipulated mice. J UOEH 35(2):147–158

    CAS  PubMed  Article  Google Scholar 

  23. Stewart VC, Heales SJ (2003) Nitric oxide-induced mitochondrial dysfunction: implications for neurodegeneration. Free Radic Biol 34(3):287–303

    CAS  Article  Google Scholar 

  24. Sun W, Wang Y, Yang Y et al (2011) The screening of inborn errors of metabolism in sick Chinese infants by tandem mass spectrometry and gas chromatography/mass spectrometry. Clin Chim Acta 412(13–14):1270–1274

    CAS  PubMed  Article  Google Scholar 

  25. Tu WJ (2011) Methylmalonic acidemia in mainland China. Ann Nutr Metab 58(4):281

    CAS  PubMed  Article  Google Scholar 

  26. Wajner M, Coelho JC (1997) Neurological dysfunction in methylmalonic acidaemia is probably related to the inhibitory effect of methylmalonate on brain energy production. J Inherit Metab Dis 20(6):761–768

    CAS  PubMed  Article  Google Scholar 

  27. Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H (2010) Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer 9:16

    PubMed Central  PubMed  Article  Google Scholar 

  28. Weisfeld-Adams JD, Morrissey MA, Kirmse BM et al (2010) Newborn screening and early biochemical follow-up in combined methylmalonic aciduria and homocystinuria, cblC type, and utility of methionine as a secondary screening analyte. Mol Genet Metab 99(2):116–123

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. Yuva-Aydemir Y, Simkin A, Gascon E, Gao FB (2011) MicroRNA-9: functional evolution of a conserved small regulatory RNA. RNA Biol 8(4):557–564

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yanjie Jia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Y., Peng, T., Wang, X. et al. A Primary Study on Down-Regulated miR-9-1 and Its Biological Significances in Methylmalonic Acidemia. J Mol Neurosci 53, 280–286 (2014). https://doi.org/10.1007/s12031-013-0218-y

Download citation

Keywords

  • Methylmalonic acidemia
  • miR-9-1
  • Biomarker