Skip to main content

Advertisement

Log in

Presynaptic K+ Channels, Vesicular Ca2+/H+ Antiport—Synaptotagmin, and Acetylcholinesterase, Three Mechanisms Cutting Short the Cholinergic Signal at Neuromuscular and Nerve–Electroplaque Junctions

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In neuromuscular and nerve–electroplaque junctions, nerve impulses can be transmitted at high frequencies. This implies that transmission of individual impulses must be very brief. We describe three mechanisms which curtail the time course of individual impulses at these synapses: (1) opening of presynaptic K+ channels (delayed rectifier) efficiently curtails the presynaptic action potential. Inhibition of K+ channel by aminopyridines transforms the normally brief postsynaptic potential (2–3 ms) to a long-lasting “giant” potential (exceeding half a second); (2) a low-affinity Ca2+/H+ antiport ensures rapid Ca2+ sequestration into synaptic vesicles, curtailing the calcium signal and thereby the duration of transmitter release. Indeed vesicular Ca2+/H+ antiport inhibition by bafilomycin or Sr2+ prolongs the duration of the postsynaptic potential. We recently showed that synaptotagmin-1 is required for this antiport activity; thus the vesicular Ca2+/H+ antiport might be synaptotagmin itself, or regulated by it; and (3) it is recalled that, in these junctions, acetylcholinesterase is highly concentrated in the synaptic cleft and that anticholinesterases lengthen the endplate time course. Therefore, at three different steps of synaptic transmission, an efficient mechanism curtails the local synaptic signal. When one of these three mechanisms is inhibited, the duration of individual impulses is prolonged, but the synapse loses its faculty to fire at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

AP:

Action potential

AmPy:

Aminopyridine

EPP:

Endplate potential or electroplaque potential

MEPPs:

Miniature endplate or miniature electroplaque potentials

NEJ:

Nerve–electroplaque junction

NMJ:

Neuromuscular junction

V-ATPase:

Vacuolar H+-transporting adenosine triphosphatase

VOCCs:

Voltage-operated calcium channels

References

  • Adams DJ, Takeda K, Umbach JA (1985) Inhibitors of calcium buffering depress evoked transmitter release at the squid giant synapse. J Physiol Lond 369:145–159

    PubMed Central  PubMed  Google Scholar 

  • Bacq ZM (1974) Les transmissions chimiques de l'influx nerveux. Gauthier-Villard, Paris Bruxelles Montréal

    Google Scholar 

  • Bacq ZM (1975) Chemical transmission of nerve impulses. a historical sketch. Pergamon, Oxford

    Google Scholar 

  • Bloedel J, Gage PW, Llinas R, Quastel DM (1966) Transmitter release at the squid giant synapse in the presence of tetrodotoxin. Nature 212:49–50

    Article  CAS  PubMed  Google Scholar 

  • Brigant JL, Mallart A (1982) Presynaptic currents in mouse motor endings. J Physiol Lond 333:619–636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castonguay A, Robitaille R (2001) Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse. J Neurosci 21:1911–1922

    CAS  PubMed  Google Scholar 

  • Cordeiro JM, Goncalves PP, Dunant Y (2011) Synaptic vesicles control the time course of neurotransmitter secretion via a Ca(2)+/H + antiport. J Physiol 589:149–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cordeiro JM, Boda B, Goncalves PP, Dunant Y (2013) Synaptotagmin 1 is required for vesicular Ca(2+)/H(+)-antiport activity. J Neurochem 126:37–46

    Article  CAS  PubMed  Google Scholar 

  • Corthay J, Dunant Y, Loctin F (1982) Acetylcholine changes underlying transmission of a single nerve impulse in the presence of 4-aminopyridine in Torpedo. J Physiol Lond 325:461–479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Couteaux R (1955) Localization of cholinesterase at neuromuscular junctions. Int Rev Cytol 4:355–375

    Google Scholar 

  • Desai-Shah M, Cooper RL (2009) Different mechanisms of Ca2+ regulation that influence synaptic transmission: comparison between crayfish and Drosophila neuromuscular junctions. Synapse 63:1100–1121

    Article  CAS  PubMed  Google Scholar 

  • Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603–625

    Article  CAS  PubMed  Google Scholar 

  • Dunant Y (1972) Some properties of the presynaptic nerve terminals in a mammalian sympathetic ganglion. J Physiol Lond 221:577–587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunant Y, Israël M (2000) Neurotransmitter release in rapid synapses. Biochimie 82:289–302

    Article  CAS  PubMed  Google Scholar 

  • Dunant Y, Muller D (1986) Quantal release of acetylcholine evoked by focal depolarisation at the Torpedo nerve–electroplaque junction. J Physiol Lond 379:461–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunant Y, Walker AI (1982) Cholinergic inhibition of acetylcholine release in the electric organ of Torpedo. Eur J Pharmacol 78:201–212

    Article  CAS  PubMed  Google Scholar 

  • Dunant Y, Eder L, Servetiadis-Hirt L (1980) Acetylcholine release evoked by single or a few nerve impulses in the electric organ of Torpedo. J Physiol Lond 298:185–203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunant Y, Cordeiro JM, Goncalves PP (2009) Exocytosis, mediatophore, and vesicular Ca2+/H+ antiport in rapid neurotransmission. Ann N Y Acad Sci 1152:100–112

    Article  CAS  PubMed  Google Scholar 

  • Dunant Y, Bancila V, Cordeiro JM (2010) Ultra-fast versus sustained cholinergic transmission: a variety of different mechanisms. J Mol Neurosci 40:27–31

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC, Katz B, Kuffler SW (1942) Effect of eserine on neuromuscular transmission. J Neurophysiol 5:211–230

    CAS  Google Scholar 

  • Fatt P, Katz B (1952) Spontaneous subthreshold activity at motor nerve endings. J Physiol Lond 117:109–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feldberg W, Fessard A, Nachmansohn D (1940) The cholinergic nature of the nervous supply to the electric organ of the Torpedo (Torpedo marmorata). J Physiol Lond 97:3P

    Google Scholar 

  • Feng TP, Shen SC (1937) Studies on the neuro-muscular junction. III. The contracture in eserinized muscle produced by nerve stimulation. Chin J Physiol 11:51–70

    CAS  Google Scholar 

  • Garcia-Segura LM, Muller D, Dunant Y (1986) Increase in the number of presynaptic large intramembrane particles during synaptic transmission at the Torpedo nerve–electroplaque junction. Neuroscience 19:63–79

    Article  CAS  PubMed  Google Scholar 

  • Gautron J (1970) Localisation des cholinestérases au niveau de la jonction nerf-électroplaque de l'organe électrique de la Torpille marbrée. C R Acad Sci Paris 271:714–717

    CAS  Google Scholar 

  • Girod R, Corrèges P, Jacquet J, Dunant Y (1993) Space and time characteristics of transmitter release at the nerve–electroplaque junction of Torpedo. J Physiol Lond 471:129–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gisiger V, Gautron J, Dunant Y (1977) Differences in acetylcholinesterase of neuro-muscular and sympathetic ganglia. Experientia 33:804

    Google Scholar 

  • Gisiger V, Vigny M, Gautron J, Rieger F (1978) Acetylcholinesterase of rat sympathetic ganglion: molecular forms, localization, and effect of denervation. J Neurochem 30:501–516

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves PP, Meireles SM, Gravato C, Vale MG (1998) Ca2+–H+-antiport activity in synaptic vesicles isolated from sheep brain cortex. Neurosci Lett 247:87–90

    Article  PubMed  Google Scholar 

  • Gonçalves PP, Meireles SM, Neves P, Vale MG (1999) Ionic selectivity of the Ca2+/H+ antiport in synaptic vesicles of sheep brain cortex. Mol Brain Res 67:283–291

    Article  PubMed  Google Scholar 

  • Gonçalves PP, Meireles SM, Neves P, Vale MG (2000) Distinction between Ca(2+) pump and Ca(2+)/H(+) antiport activities in synaptic vesicles of sheep brain cortex. Neurochem Int 37:387–396

    Article  PubMed  Google Scholar 

  • Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of the membrane current and its application to conduction and excitation in nerve. J Physiol Lond 117:500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Israël M, Manaranche R, Marsal J, Meunier FM, Morel N, Frachon P, Lesbats B (1980) ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ. J Membr Biol 54:115–126

    Article  PubMed  Google Scholar 

  • Israël M, Morel N, Lesbats B, Birman S, Manaranche R (1986) Purification of a presynaptic membrane protein that mediates a calcium-dependent translocation of acetylcholine. Proc Natl Acad Sci U S A 83:9226–9230

    Article  PubMed Central  PubMed  Google Scholar 

  • Israël M, Meunier FM, Morel N, Lesbats B (1987) Calcium-induced desensitization of acetylcholine release from synaptosomes or proteoliposomes equiped with mediatophore, a presynaptic membrane protein. J Neurochem 49:975–982

    Article  PubMed  Google Scholar 

  • Katz B (1989) Looking back at the neuromuscular junction. In: Sellin LC, Libelius R, Thesleff S (eds) Neuromuscular junction. Elsevier Science, Amsterdam, pp 3–9

    Google Scholar 

  • Katz B, Miledi R (1966) Input–output relation of a single synapse. Nature 212:1242–1245

    Article  CAS  PubMed  Google Scholar 

  • Katz B, Miledi RB (1969) Tetrodotoxin-resistant electric activity in presynaptic terminals. J Physiol Lond 203:459–487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katz B, Miledi RB (1979) Estimates of quantal content during “chemical potentiation” of transmitter release. Proc R Soc Lond B 205:369–378

    Article  CAS  PubMed  Google Scholar 

  • Katz B, Thesleff S (1957) A study of the “desensitization” produced by acetylcholine at the motor Endplate. J Physiol Lond 138:63–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kriebel ME, Gross CE (1974) Multimodal distribution of frog miniature endplate potentials in adult, denervated and tadpole leg muscle. J Gen Physiol 64:85–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuffler SW, Yoshikami D (1975) The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J Physiol Lond 251:465–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llinas R, Walton K, Bohr V (1976) Synaptic transmission in the squid giant synapse after potassium conductance blockage with external 3- and 4-aminopyridineaino. Biophys J 16:83–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Llinas R, Steinberg IZ, Walton K (1981) Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys J 33:323–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Sci USA 256:677–679

    CAS  Google Scholar 

  • Michaelson DM, Ophir I, Angel I (1980) ATP-stimulated Ca2+ transport into cholinergic Torpedo synaptic vesicles. J Neurochem 35:116–124

    Article  CAS  PubMed  Google Scholar 

  • Molgo J, Thesleff S (1982) 4-Aminoquinoline-induced “giant” endplate potentials at mammalian neuromuscular junctions. Proc R Soc B 214:229–247

    Article  CAS  Google Scholar 

  • Muller D (1986) Potentiation by 4-aminopyridine of quantal acetylcholine release at the Torpedo nerve electroplaque junction. J Physiol Lond 379:479–493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller D, Garcia-Segura LM, Parducz A, Dunant Y (1987) Brief occurrence of a population of large intramembrane particles in the presynaptic membrane during transmission of a nerve impulse. Proc Natl Acad Sci U S A 84:590–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parekh AB (2008) Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function. J Physiol 586:3043–3054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reigada D, Diez-Perez I, Gorostiza P, Verdaguer A, Gomez DAI, Pineda O, Vilarrasa J, Marsal J, Blasi J, Aleu J, Solsona C (2003) Control of neurotransmitter release by an internal gel matrix in synaptic vesicles. Proc Natl Acad Sci U S A A100:3485–3490

    Article  Google Scholar 

  • Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    Article  CAS  PubMed  Google Scholar 

  • Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14:3246–3262

    CAS  PubMed  Google Scholar 

  • Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684

    CAS  PubMed  Google Scholar 

  • Rusakov DA (2006) Ca2+-dependent mechanisms of presynaptic control at central synapses. Neuroscientist 12:317–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sabatini BL, Regehr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384:170–172

    Article  CAS  PubMed  Google Scholar 

  • Sakmann B, Methfessel C, Mishina M, Takahashi T, Takai T, Kurasaki M, Fukuda K, Numa S (1985) Role of acetylcholine receptor subunits in gating of the channel. Nature 318:538–543

    Article  CAS  PubMed  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  CAS  PubMed  Google Scholar 

  • Torri-Tarelli F, Grohovaz F, Fesce R, Ceccarelli B (1985) Temporal coincidence between synaptic vesicle fusion and quantal secretion of acetylcholine. J Cell Biol 101:1386–1399

    Article  CAS  PubMed  Google Scholar 

  • Van der Kloot W, Molgo J (1994) Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev 74:899–991

    PubMed  Google Scholar 

  • Villalobos C, Nunez L, Montero M, Garcia AG, Alonso MT, Chamero P, Alvarez J, Garcia-Sancho J (2002) Redistribution of Ca2+ among cytosol and organelles during stimulation of bovine chromaffin cells. FASEB J 16:343–353

    Article  CAS  PubMed  Google Scholar 

  • Xu-Friedman MA, Regehr WG (2000) Probing fundamental aspects of synaptic transamission with strontium. J Neurosci 20:4414–4422

    CAS  PubMed  Google Scholar 

  • Yazejian B, Sun XP, Grinnell AD (2000) Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels. Nat Neurosci 3:566–571

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Dunant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunant, Y., Cordeiro, J.M. Presynaptic K+ Channels, Vesicular Ca2+/H+ Antiport—Synaptotagmin, and Acetylcholinesterase, Three Mechanisms Cutting Short the Cholinergic Signal at Neuromuscular and Nerve–Electroplaque Junctions. J Mol Neurosci 53, 377–386 (2014). https://doi.org/10.1007/s12031-013-0212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0212-4

Keywords

Navigation