Skip to main content
Log in

In vivo Proton NMR Spectroscopy of Genetic Mouse Models BALB/cJ and C57BL/6By: Variation in Hippocampal Glutamate Level and the Metabotropic Glutamate Receptor, Subtype 7 (Grm7) Gene

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Glutamatergic neurotransmission in the brain is modulated by metabotropic glutamate receptors (mGluR). In recent studies, we identified a cis-regulated variant of a gene (Grm7) which codes for mGluR subtype 7 (mGluR7), a presynaptic inhibitory receptor. The genetic variant derived from the BALB/cJ mouse strain (Grm7 BALB/cJ) codes for higher abundance of mGluR7 mRNA in the hippocampus than the C57BL/6By strain-derived variant (Grm7 C57BL/6By). Here, we used localized in vivo 1H NMR spectroscopy to test the hypothesis that Grm7 BALB/cJ is also associated with lower glutamate concentration in the same brain region. All data were obtained on a 7.0 T Agilent (Santa Clara, CA, USA) 40-cm bore system using experimentally naive adult male inbred C57BL/6By, BALB/cJ, and congenic mice (B6By.C.6.132.54) constructed in our laboratory carrying Grm7 BALB/cJ on C57BL/6By genetic background. The voxel of interest size was 6 μL (1 × 2 × 3 mm3) placed in the hippocampal CA1 region. The results showed that the hippocampal level of glutamate in the congenic mouse strain was significantly lower than that in the background C57BL/6By strain which carried the Grm7 C57BL/6By allele. Because the two inbred strains are genetically highly similar except at the region of the Grm7 gene, the results raise the possibility that allelic variation at the Grm7 locus contributes to the strain differences in both hippocampal mRNA abundance and glutamate level which may modulate complex behavioral traits, such as learning and memory, addiction, epilepsy, and mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

Ala:

alanine

ANOVA:

analysis of variance

Asp:

aspartate

B6By:

C57BL/6By

B6By.C:

B6By.C.6.132.54

C:

BALB/cJ

Cr:

creatine

CRLB:

Cramér-Rao lower bounds

GABA:

γ-aminobutyric acid

Glc:

glucose

Gln:

glutamine

Glu:

glutamate

GPC:

glycerophosphorylcholine

Grm7 :

glutamate receptor metabotropic subtype 7

GSH:

glutathione

mI:

myo-inositol

NAA:

N-acetylaspartate

NAAG:

N-acetylaspartylglutamate

PCh:

phosphorylcholine

PCr:

phosphocreatine

PE:

phosphorylethanolamine

RF:

radiofrequency

Tau:

taurine

References

  • Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  • Belzung C (2001) The genetic basis of the pharmacological effects of anxiolytics: a review based on rodent models. Behav Pharmacol 12:451–460

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann NY Acad Sci 508:333–348

    Article  PubMed  CAS  Google Scholar 

  • Cheng A, Wan R, Yang JL, Kamimura N, Son TG, Ouyang X, Luo Y, Okun E, Mattson MP (2012) Involvement of PGC-1alpha in the formation and maintenance of neuronal dendritic spines. Nat Commun 3:1250

    Article  PubMed  CAS  Google Scholar 

  • Ciccarelli R, Sureda FX, Casabona G, Di Iorio P, Caruso A, Spinella F, Condorelli DF, Nicoletti F, Caciagli F (1997) Opposite influence of the metabotropic glutamate receptor subtypes mGlu3 and -5 on astrocyte proliferation in culture. Glia 21:390–398

    Article  PubMed  CAS  Google Scholar 

  • D'Antoni S, Berretta A, Bonaccorso CM, Bruno V, Aronica E, Nicoletti F, Catania MV (2008) Metabotropic glutamate receptors in glial cells. Neurochem Res 33:2436–2443

    Article  PubMed  CAS  Google Scholar 

  • Duarte JM, Lei H, Mlynarik V, Gruetter R (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 61:342–362

    Article  PubMed  CAS  Google Scholar 

  • Eleftheriou BE, Bailey DW, Denenberg VH (1974) Genetic analysis of fighting behavior in mice. Physiol Behav 13:773–777

    Article  PubMed  CAS  Google Scholar 

  • Featherstone DE (2010) Intercellular glutamate signaling in the nervous system and beyond. ACS Chem Neurosci 1:4–12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29:804–811

    Article  PubMed  CAS  Google Scholar 

  • Gyetvai B, Simonyi A, Oros M, Saito M, Smiley J, Vadasz C (2011) mGluR7 genetics and alcohol: intersection yields clues for addiction. Neurochem Res 36:1087–1100

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter JR, Mayeda AR, Possidente B, Nurnberger JI Jr (1995) Quantitative trait loci (QTL) for circadian rhythms of locomotor activity in mice. Behav Genet 25:545–556

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW (2007) Cocaine and amphetamine-like psychostimulants: neurocircuitry and glutamate neuroplasticity. Dialogues Clin Neurosci, Les Laboratoires Servier, Neuilly-sur-Seine Cedex - France 9:389–397

    Google Scholar 

  • Knackstedt LA, Kalivas PW (2009) Glutamate and reinstatement. Curr Opin Pharmacol 9:59–64

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McClearn GE, Rodgers DA (1959) Differences in alcohol preference among inbred strains of mice. Aggress Violent Behav 20:691–695

    Google Scholar 

  • Ottersen OP (1989) Quantitative electron microscopic immunocytochemistry of neuroactive amino acids. Anat Embryol (Berl) 180:1–15

    Article  CAS  Google Scholar 

  • Phillips T, Makoff A, Murrison E, Mimmack M, Waldvogel H, Faull R, Rees S, Emson P (1998) Immunohistochemical localisation of mGluR7 protein in the rodent and human cerebellar cortex using subtype specific antibodies. Brain Res Mol Brain Res 57:132–141

    Article  PubMed  CAS  Google Scholar 

  • Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  • Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299:12–20

    PubMed  CAS  Google Scholar 

  • Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656

    Article  PubMed  CAS  Google Scholar 

  • Tkac I, Henry PG, Andersen P, Keene CD, Low WC, Gruetter R (2004) Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn Reson Med 52:478–484

    Article  PubMed  CAS  Google Scholar 

  • Vadasz C, Kobor G, Lajtha A (1992) Motor activity and the mesotelencephalic dopamine function. I. High-resolution temporal and genetic analysis of open-field behavior. Behav Brain Res 48:29–39

    Article  PubMed  CAS  Google Scholar 

  • Vadasz C, Fleischer A, LaFrancois J, Mao RF (1996) Self-administration of ethanol: towards the location of predisposing polygenes in quasi-congenic animal models. Alcohol 13:617–620

    Article  PubMed  CAS  Google Scholar 

  • Vadasz C, Saito M, Balla A, Kiraly I, Vadasz C 2nd, Gyetvai B, Mikics E, Pierson D, Brown D, Nelson JC (2000) Mapping of quantitative trait loci for ethanol preference in quasi-congenic strains. Alcohol 20:161–171

    Article  PubMed  CAS  Google Scholar 

  • Vadasz C, Saito M, Gyetvai BM, Oros M, Szakall I, Kovacs KM, Prasad VV, Morahan G, Toth R (2007a) Mapping of QTLs for oral alcohol self-administration in B6.C and B6.I quasi-congenic RQI strains. Neurochem Res 32:1099–1112, NIHMSID #74129

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vadasz C, Saito M, Gyetvai BM, Oros M, Szakall I, Kovacs KM, Prasad VV, Toth R (2007b) Glutamate receptor metabotropic 7 is cis-regulated in the mouse brain and modulates alcohol drinking. Genomics 90:690–702

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Vadasz.

Additional information

David N Guilfoyle and Csaba Vadasz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guilfoyle, D.N., Gerum, S. & Vadasz, C. In vivo Proton NMR Spectroscopy of Genetic Mouse Models BALB/cJ and C57BL/6By: Variation in Hippocampal Glutamate Level and the Metabotropic Glutamate Receptor, Subtype 7 (Grm7) Gene. J Mol Neurosci 53, 135–141 (2014). https://doi.org/10.1007/s12031-013-0211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0211-5

Keywords

Navigation