Skip to main content
Log in

Axonal Transport of Neprilysin in Rat Sciatic Nerves

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Axonal transport of neprilysin, a putative neuropeptide degrading-enzyme, was examined in the proximal, middle, and distal segments of rat sciatic nerves using a double ligation technique. Neprilysin activity was significantly increased not only in the proximal segment but also in the distal segment 12–120 h after ligation, and the maximal neprilysin activity was found in the proximal and distal segments at 96 and 72 h, respectively. Western blot analysis of neprilysin showed that its immunoreactivities in the proximal and distal segments were 2.8- and 2.4-fold higher than that in the middle segment, indicating that neprilysin is transported by anterograde and retrograde axonal flow. These observations suggest that neprilysin may be involved in the metabolism of neuropeptides in nerve terminals or synaptic clefts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

Aβ:

Amyloid-β

CCK:

Cholecystokinin

CPE:

Carboxypeptidase E

DFP:

Diisopropylfluorophosphate

N-DNS-AG:

N-Dansyl-d-alanylglycine

N-DNS-AGNPG:

N-Dansyl-d-alanylglycyl-p-nitrophenylalanylglycine

N-DNS-R:

N-Dansyl-arginine

HRP:

Horseradish peroxidase

IAA:

Iodoacetic acid

NEP:

Neprilysin

OD:

Optical density

pAb:

Polyclonal antibody

PAM:

Peptidylglycine α-amidating monooxygenase

PBS:

Phosphate-buffered saline

PCMS:

p-Chloromercuriphenylsulfonic acid

SP:

Substance P

TPBS:

Tween-PBS

References

  • Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I (2009) Amyloid-β as a positive endogenous regulator of release probability at Hippocampal synapses. Nature Neurosci 12:1567–1576

    Article  PubMed  CAS  Google Scholar 

  • Chikuma T, Shimizu M, Tsuchiya Y, Kato T, Hojo H (2007) Axonal transports of tripeptidyl peptidase II in rat sciatic nerves. Neurochem Int 50:236–242

    Article  PubMed  CAS  Google Scholar 

  • Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, Mennerick S, Holzman DM (2005) Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48:913–922

    Article  PubMed  CAS  Google Scholar 

  • Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, Bu G, Mennerick S, Holzman DM (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-β in vivo. Neuron 58:42–51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cortes R, Aman K, Arvidsson U, Terenius L, Frey P, Rehfeld JF, Walsh JH, Hokfelt T (1991) Immunohistochemical study of cholecystokinin peptide in rat spinal motoneurons. Synapse 9:103–110

    Article  PubMed  CAS  Google Scholar 

  • Drew SC, Masters CL, Barnham KL (2010) Alzheimer’s Aβ peptides with disease-associated N-terminal modifications: Influence of isomerization, truncation and mutation on Cu2+ coordination. PLoS ONE 5:e15875

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eckman EA, Adams SK, Troendle FJ, Stodola BA, Kahn MA, Fauq AH, Xiao HD, Bernstein KE, Echman CB (2006) Regulation of steady-state β-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J Biol Chem 281:30471–30478

    Article  PubMed  CAS  Google Scholar 

  • Haass C (2004) Take five-BACE and the γ-secretase quartet conduct Alzheimer’s amyloid β-peptide generation. EMBO J 23:483–488

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Howell S, Nalbantoglu J, Crine P (1995) Neutral endopeptidase can hydrolyze β-amyloid (1–40) but shows no effect on β-amyloid precursor protein metabolism. Peptides 16:647–652

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi T, Jyonouchi K, Kato T, Chikuma T, Tanaka A (2000) Anterograde axonal transport of Boc-Arg-Val-Arg-Arg-MCA hydrolyzing enzyme in rat sciatic nerves: Cleavage occurs between basic residues. Biochim Biophys Acta 1476:337–349

    Article  PubMed  CAS  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y, Saido TC (2000) Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nature Med 6:143–150

    Article  PubMed  CAS  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain Aβ by neprilysin. Science 292:1550–1552

    Article  PubMed  CAS  Google Scholar 

  • Jawhar S, Wirths O, Bayer TA (2011) Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease. J Biol Chem 286:38825–38832

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37:925–937

    Article  PubMed  CAS  Google Scholar 

  • Kanemitsu H, Tomiyama T, Mori H (2003) Human neprilysin is capable of degrading amyloid β peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci Lett 350:113–116

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Ishihara H, Shimizu A, Yokosawa H, Ishii H, Komiya Y (1987) The axonal transport of dipeptidyl aminopeptidase II, angiotenshin-converting enzyme and other peptidases in rat sciatic nerves. Neurosci Res 4:241–248

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Yajima R, Sato N, Takahashi K, Shimizu C, Chikuma T (1998) Axonal transports of Boc-Gly-Arg-Arg-MCA hydrolyzing enzyme in rat sciatic nerves. Neurochem Int 32:163–170

    Article  PubMed  CAS  Google Scholar 

  • Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, Price DL (1990) Precursor of amyroid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci U S A 87:1561–1565

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Malito E, Hulse RE, Tang WJ (2008) Amyloid β-degrading cryptidases: Insulin degrading enzyme, presequence peptidase, and neprilisin. Cell Mol Life Sci 65:2574–2585

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 23:1992–1996

    PubMed  CAS  Google Scholar 

  • Mckelvy JF, Blumberg S (1986) Inactivation and metabolism of neuropeptides. Annu Rev Neurosci 9:415–434

    Article  PubMed  CAS  Google Scholar 

  • Nalivaeva NN, Belyaev ND, Zhuravin IA, Turner AJ (2012) The Alzheimer’s amyloid-degrading peptidase, neprilysin: can we control it? Int J Alzheimer’s Dis 383796:12

    Google Scholar 

  • Relton JM, Gee NS, Matsas R, Turner AJ, Kenny AJ (1983) Purification of endopeptidase 24.11 (‘enkephalinase’) from pig brain by immunoadsorbent chromatography. Biochem J 215:519–523

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shirotani K, Tsubuki S, Iwata N, Takaki Y, Harigaya W, Maruyama K, Kiryu-Seo S, Kiyama H, Iwata H, Tomita T, Iwatsubo T, Saido TC (2001) Neprilysin degrades both amyloid β peptides 1–40 and 1–42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem 276:21895–21901

    Article  PubMed  CAS  Google Scholar 

  • Strooper BD, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113:1857–1870

    PubMed  Google Scholar 

  • Takaki Y, Iwata N, Tsubuki S, Taniguchi S, Toyoshima S, Lu B, Gerard NP, Gerard C, Lee HJ, Shirotani K, Saido TC (2000) Biochemical identification of the neutral endopeptidase family member responsible for the catabolism of amyloid β peptide in the brain. J Biochem 128:897–902

    Article  PubMed  CAS  Google Scholar 

  • Tozawa K, Arakawa E, Chikuma T, Oh-hashi Y, Yajima R, Takeda K, Shinozaki H, Kato T (1990) Anterograde axonal transport of peptidylglycine α-amidating monooxygenase in rat sciatic nerves. J Neurochem 55:745–749

    Article  PubMed  CAS  Google Scholar 

  • Yajima R, Chikuma T, Kato T (1994) A rapid anterograde axonal transport of carboxypeptidase H in rat sciatic nerves. J Neurochem 63:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Chikuma T, Yajima R, Hirano H, Yamamoto Y, Nishi K, Ohkubo I, Kato T (2002) Axonal transport of puromycin-sensitive aminopeptidase in rat sciatic nerves. Neurosci Res 42:133–140

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Chikuma T, Yamashita A, Yamaguchi M, Hojo H, Ozeki Y, Ahmed M, Kato T (2003) Anterograde axonal transport of endopeptidase 24.15 in rat sciatic nerves. Neurochem Int 42:231–237

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Chikuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkushi, G., Suzuki, N., Kobayashi, S. et al. Axonal Transport of Neprilysin in Rat Sciatic Nerves. J Mol Neurosci 53, 96–102 (2014). https://doi.org/10.1007/s12031-013-0202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0202-6

Keywords

Navigation