Skip to main content
Log in

UCH-L1 Inhibition Involved in CREB Dephosphorylation in Hippocampal Slices

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is abundantly expressed in the brain and is critical for the normal function of synapses. cAMP response element binding protein (CREB) is a transcription factor which initiates the expression of proteins that related to the regulation of synaptic plasticity and memory function. Studies have shown that UCH-L1 can influence the expression and activity of CREB, but the underlying mechanisms remain unclear. In this study, we used UCH-L1 inhibitor LDN to treat mice hippocampal slices and found that UCH-L1 inhibition caused the dephosphorylation of CREB at Ser133 site. Meanwhile, hyperphosphorylation of microtubule-associated protein tau; increased expression of synaptic protein components of PSD-95 and synapsin-1, and decreased activity of tyrosine kinase Fyn were observed after UCH-L1 inhibition. Moreover, all these alternations have an influence on the normal function of N-methyl-d-aspartate (NMDA) receptor NR2B subunit which is likely to result in the dephosphorylation of CREB. We also found that LDN treatment mediated protein kinase A (PKA) deactivation was involved in the dephosphorylation of CREB. Thus, our study introduces a novel possible mechanism for elaborating the effects of UCH-L1 inhibition on the CREB activity and the implicated signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe T, Matsumura S, Katano T, Mabuchi T, Takagi K, Xu L, Yamamoto A, Hattori K, Yagi T, Watanabe M, Nakazawa T, Yamamoto T, Mishina M, Nakai Y, Ito S (2005) Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain. Eur J Neurosci 22:1445–1454

    Article  PubMed  Google Scholar 

  • Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672

    Article  PubMed  CAS  Google Scholar 

  • Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287:121–149

    PubMed  Google Scholar 

  • Burnouf S, Martire A, Derisbourg M, Laurent C, Belarbi K, Leboucher A, Fernandez-Gomez FJ, Troquier L, Eddarkaoui S, Grosjean ME, Demeyer D, Muhr-Tailleux A, Buisson A, Sergeant N, Hamdane M, Humez S, Popoli P, Buée L, Blum D (2013) NMDA receptor dysfunction contributes to impaired brain-derived neurotrophic factor-induced facilitation of hippocampal synaptic transmission in a Tau transgenic model. Aging Cell 12:11–23

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  PubMed  CAS  Google Scholar 

  • Cartier AE, Djakovic SN, Salehi A, Wilson SM, Masliah E, Patrick GN (2009) Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. J Neurosci 29:7857–7868

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Castegna A, Thongboonkerd V, Klein J, Lynn BC, Wang YL, Osaka H, Wada K, Butterfield DA (2004) Proteomic analysis of brain proteins in the gracile axonal dystrophy (gad) mouse, a syndrome that emanates from dysfunctional ubiquitin carboxyl-terminal hydrolase L-1, reveals oxidation of key proteins. J Neurochem 88:1540–1546

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s Diseases. J Biol Chem 279:13256–13264

    Article  PubMed  CAS  Google Scholar 

  • Chung CH, Baek SH (1999) Deubiquitinating enzymes: their diversity and emerging roles. Biochem Biophys Res Commun 266:633–640

    Article  PubMed  CAS  Google Scholar 

  • Colledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK, Lu H, Bear MF, Scott JD (2003) Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40:595–607

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Vrij FM, Fischer DF, van Leeuwen FW, Hol EM (2004) Protein quality control in Alzheimer’s disease by the ubiquitin proteasome system. Prog Neurobiol 74:249–270

    Article  PubMed  CAS  Google Scholar 

  • Dennissen FJ, Kholod N, van Leeuwen FW (2012) The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim. Prog Neurobiol 96:190–207

    Article  PubMed  CAS  Google Scholar 

  • Eytan E, Armon T, Heller H, Beck S, Hershko A (1993) Ubiquitin C-terminal hydrolase activity associated with the 26 S protease complex. J Biol Chem 268:4668–4674

    PubMed  CAS  Google Scholar 

  • Gahwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20:471–477

    Article  PubMed  CAS  Google Scholar 

  • Gong B, Leznik E (2007) The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect 20:365–370

    Article  PubMed  CAS  Google Scholar 

  • Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of tau protein in Alzheimer's disease. J Neural Transm 112:813–838

    Article  PubMed  CAS  Google Scholar 

  • Gong B, Cao Z, Zheng P, Vitolo OV, Liu S, Staniszewski A, Moolman D, Zhang H, Shelanski M, Arancio O (2006) Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell 126:775–788

    Article  PubMed  CAS  Google Scholar 

  • Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signaling. Trends Neurosci 26:81–89

    Article  PubMed  CAS  Google Scholar 

  • Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    PubMed  CAS  Google Scholar 

  • Hegde AN, Goldberg AL, Schwartz JH (1993) Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long-term synaptic plasticity. Proc Natl Acad Sci U S A 90:7436–7440

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hegde AN, Inokuchi K, Pei W, Casadio A, Ghirardi M, Chain DG, Martin KC, Kandel ER, Schwartz JH (1997) Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 89:115–126

    Article  PubMed  CAS  Google Scholar 

  • Holopainen IE (2005) Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem Res 30(12):1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Götz J (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s Disease mouse models. Cell 142:387–397

    Article  PubMed  CAS  Google Scholar 

  • Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721–5729

    Article  PubMed  CAS  Google Scholar 

  • Kida SA (2012) functional role for CREB as a positive regulator of memory formation and LTP. Exp Neurobiol 21:136–140

    Article  PubMed Central  PubMed  Google Scholar 

  • Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D (2012) Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012:731526

    PubMed Central  PubMed  Google Scholar 

  • Larsen CN, Krantz BA, Wilkinson KD (1998) Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37:3358–3368

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Silva AJ (2009) The molecular and cellular biology of enhanced cognition. Nat Rev Neurosci 10:126–140

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li M, Zhang DQ, Wang XZ, Xu TJ (2011) NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway. Biochem Biophys Res Commun 411:667–672

    Article  PubMed  CAS  Google Scholar 

  • Lim IA, Hall DD, Hell JW (2002) Selectivity and promiscuity of the first and second PDZ domains of PSD-95 and synapse-associated protein 102. J Biol Chem 277:21697–21711

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111:209–218

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Jiang YG, Huang CY, Fang HY, Fang HT, Pang W (2008) Depletion of intracellular zinc down-regulates expression of Uch-L1 mRNA and protein, and CREB mRNA in cultured hippocampal neurons. Nutr Neurosci 11:96–102

    Article  PubMed  CAS  Google Scholar 

  • Loftis JM, Janowsky A (2003) The N-methyl-d-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther 97:55–85

    Article  PubMed  CAS  Google Scholar 

  • Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609

    Article  PubMed  CAS  Google Scholar 

  • Monti B, Marri L, Contestabile A (2002) NMDA receptor-dependent CREB activation in survival of cerebellar granule cells during in vivo and in vitro development. Eur J Neurosci 16:1490–1498

    Article  PubMed  Google Scholar 

  • Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T, Yamamoto T (2001) Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-d-aspartate receptor. J Biol Chem 276:693–699

    Article  PubMed  CAS  Google Scholar 

  • Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786

    Article  PubMed  CAS  Google Scholar 

  • Osaka H, Wang YL, Takada K, Takizawa S, Setsuie R, Li H, Sato Y, Nishikawa K, Sun YJ, Sakurai M, Harada T, Hara Y, Kimura I, Chiba S, Namikawa K, Kiyama H, Noda M, Aoki S, Wada K (2003) Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet 12:1945–1958

    Article  PubMed  CAS  Google Scholar 

  • Qiu S, Li XY, Zhuo M (2011) Post-translational modification of NMDA receptor GluN2B subunit and its roles in chronic pain and memory. Semin. Cell Dev Biol 22:521–529

    Article  CAS  Google Scholar 

  • Ren QG, Liao XM, Wang ZF, Qu ZS, Wang JZ (2006) The involvement of glycogen synthase kinase-3 and protein phosphatase-2A in lactacystin-induced tau accumulation. FEBS Lett 580:2503–2511

    Article  PubMed  CAS  Google Scholar 

  • Reynolds CH, Garwood CJ, Wray S, Price C, Kellie S, Perera T, Zvelebil M, Yang A, Sheppard PW, Varndell IM, Hanger DP, Anderton BH (2008) Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family kinases. J Biol Chem 283:18177–18186

    Article  PubMed  CAS  Google Scholar 

  • Rong Y, Lu X, Bernard A, Khrestchatisky M, Baudry M (2001) Tyrosine phosphorylation of ionotropic glutamate receptors by Fyn or Src differentially modulates their susceptibility to calpain and enhances their binding to spectrin and PSD-95. J Neurochem 79:382–390

    Article  PubMed  CAS  Google Scholar 

  • Sakurai M, Sekiguchi M, Zushida K, Yamada K, Nagamine S, Kabuta T, Wada K (2008) Reduction in memory in passive avoidance learning, exploratory behaviour and synaptic plasticity in mice with a spontaneous deletion in the ubiquitin C-terminal hydrolase L1 gene. Eur J Neurosci 27:691–701

    Article  PubMed  Google Scholar 

  • Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673

    Article  PubMed  CAS  Google Scholar 

  • Zhuo M (2009) Plasticity of NMDA receptor NR2B subunit in memory and chronic pain. Mol Brain 2:4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 30700208, No. 30800329, and No. 31172102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Mei Liao.

Additional information

M. Xie and S.H. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, M., Wang, SH., Lu, ZM. et al. UCH-L1 Inhibition Involved in CREB Dephosphorylation in Hippocampal Slices. J Mol Neurosci 53, 59–68 (2014). https://doi.org/10.1007/s12031-013-0197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0197-z

Keywords

Navigation