Skip to main content
Log in

Delineation of Domains Within the Cannabinoid CB1 and Dopamine D2 Receptors That Mediate the Formation of the Heterodimer Complex

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Both the cannabinoid CB1 receptor (CB1) and dopamine D2 receptor (D2R) are G protein-coupled receptors that are linked to inhibitory Gαi/o protein, whereby activation of the receptor leads to the inhibition of cAMP production. Moreover, previous findings have shown evidence of cross-talk between the dopamine and endocannabinoid systems. In this report, we confirm the interaction of CB1 and D2R with co-immunoprecipitation experiments using human embryonic kidney 293T (HEK-293T) cells co-expressing both receptors. We also generated GST and His-tagged fusion proteins of the D2R and CB1 and conducted affinity purification assays and in vitro binding experiments to show that the CB1–D2R complex can be formed by a direct protein–protein interaction. This interaction is mediated by the carboxyl terminus of the CB1 receptor and the third intracellular loop of the D2 receptor. Co-transfection of an inhibitory mini-gene resulted in decreased levels of the CB1–D2R complex. Using a cAMP biosensor, we show that activation of D2R or CB1 alone in HEK-293T cells co-expressing both receptors leads to an inhibition of forskolin-stimulated cAMP accumulation. However, co-activation of both receptors resulted in a loss of this inhibition on cAMP accumulation. Our findings characterize the physical interaction between CB1 and D2R as well as demonstrate the potential functional outcome of the receptor complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CB1:

Cannabinoid CB1 receptor

D2R:

Dopamine D2 receptor

DA:

Dopamine

coIP:

Co-immunoprecipitation

FRET:

Förster resonance energy transfer

MBiFC:

Multicolor bimolecular fluorescence complementation

PI:

Phosphoinositide

References

  • Bakshi K, Mercier RW, Pavlopoulos S (2007) Interaction of a fragment of the cannabinoid CB1 receptor C-terminus with arrestin-2. FEBS Lett 581:5009–5016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bartlett SE, Enquist J, Hopf FW, Lee JH, Gladher F, Kharazia V, Waldhoer M, Mailliard WS, Armstrong R, Bonci A, Whistler JL (2005) Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci U S A 102:11521–11526

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bloom AS, Kiernan CJ (1980) Interaction of ambient temperature with the effects of delta 9-tetrahydrocannabinol on brain catecholamine synthesis and plasma corticosterone levels. Psychopharmacology (Berl) 67:215–219

    Article  CAS  Google Scholar 

  • Bofill-Cardona E, Kudlacek O, Yang Q, Ahorn H, Freissmuth M, Nanoff C (2000) Binding of calmodulin to the D2-dopamine receptor reduces receptor signaling by arresting the G protein activation switch. J Biol Chem 275:32672–32680

    Article  PubMed  CAS  Google Scholar 

  • Canals M, Milligan G (2008) Constitutive activity of the cannabinoid CB1 receptor regulates the function of co-expressed Mu opioid receptors. J Biol Chem 283:11424–11434

    Article  PubMed  CAS  Google Scholar 

  • Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, Neve K, Fuxe K, Agnati LF, Woods AS, Ferre S, Lluis C, Bouvier M, Franco R (2003) Adenosine A2A–dopamine D2 receptor–receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 278:46741–46749

    Article  PubMed  CAS  Google Scholar 

  • Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Muller C, Woods AS, Hope BT, Ciruela F, Casado V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferre S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259

    Article  PubMed  CAS  Google Scholar 

  • Centonze D, Battista N, Rossi S, Mercuri NB, Finazzi-Agro A, Bernardi G, Calabresi P, Maccarrone M (2004) A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal GABAergic transmission. Neuropsychopharmacology 29:1488–1497

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo V (2008) Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 7:438–455

    Article  PubMed  CAS  Google Scholar 

  • Diana M, Melis M, Gessa GL (1998) Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. Eur J Neurosci 10:2825–2830

    Article  PubMed  CAS  Google Scholar 

  • El Khoury MA, Gorgievski V, Moutsimilli L, Giros B, Tzavara ET (2012) Interactions between the cannabinoid and dopaminergic systems: evidence from animal studies. Prog Neuropsychopharmacol Biol Psychiatry 38:36–50

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Pediani JD, Canals M, Milasta S, Milligan G (2006) Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J Biol Chem 281:38812–38824

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald ML, Chan J, Mackie K, Lupica CR, Pickel VM (2012) Altered dendritic distribution of dopamine D2 receptors and reduction in mitochondrial number in parvalbumin-containing interneurons in the medial prefrontal cortex of cannabinoid-1 (CB1) receptor knockout mice. J Comp Neurol 520:4013–4031

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gardner EL (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81:263–284

    Article  PubMed  CAS  Google Scholar 

  • Ginovart N, Tournier BB, Moulin-Sallanon M, Steimer T, Ibanez V, Millet P (2012) Chronic Delta(9)-tetrahydrocannabinol exposure induces a sensitization of dopamine D(2)/(3) receptors in the mesoaccumbens and nigrostriatal systems. Neuropsychopharmacology 37:2355–2367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 2:358–363

    Article  PubMed  CAS  Google Scholar 

  • Glass M, Felder CC (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 17:5327–5333

    PubMed  CAS  Google Scholar 

  • Hattendorf C, Hattendorf M, Coper H, Fernandes M (1977) Interaction between delta(9)-tetrahydrocannabinol and d-amphetamine. Psychopharmacology (Berl) 54:177–182

    Article  CAS  Google Scholar 

  • Hermann H, Marsicano G, Lutz B (2002) Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain. Neuroscience 109:451–460

    Article  PubMed  CAS  Google Scholar 

  • Higuera-Matas A, Botreau F, Del Olmo N, Miguens M, Olias O, Montoya GL, Garcia-Lecumberri C, Ambrosio E (2010) Periadolescent exposure to cannabinoids alters the striatal and hippocampal dopaminergic system in the adult rat brain. Eur Neuropsychopharmacol 20:895–906

    Article  PubMed  CAS  Google Scholar 

  • Hilairet S, Bouaboula M, Carriere D, Le Fur G, Casellas P (2003) Hypersensitization of the Orexin 1 receptor by the CB1 receptor: evidence for cross-talk blocked by the specific CB1 antagonist, SR141716. J Biol Chem 278:23731–23737

    Article  PubMed  CAS  Google Scholar 

  • Hojo M, Sudo Y, Ando Y, Minami K, Takada M, Matsubara T, Kanaide M, Taniyama K, Sumikawa K, Uezono Y (2008) mu-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: electrophysiological and FRET assay analysis. J Pharmacol Sci 108:308–319

    Article  PubMed  CAS  Google Scholar 

  • Houchi H, Babovic D, Pierrefiche O, Ledent C, Daoust M, Naassila M (2005) CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology 30:339–349

    Article  PubMed  CAS  Google Scholar 

  • Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol 168:53–79

    Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    Article  PubMed  CAS  Google Scholar 

  • Jarrahian A, Watts VJ, Barker EL (2004) D2 dopamine receptors modulate Galpha-subunit coupling of the CB1 cannabinoid receptor. J Pharmacol Exp Ther 308:880–886

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Brown S, Roche JP, Hsieh C, Celver JP, Kovoor A, Chavkin C, Mackie K (1999) Distinct domains of the CB1 cannabinoid receptor mediate desensitization and internalization. J Neurosci 19:3773–3780

    PubMed  CAS  Google Scholar 

  • Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R (2002) Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 22:8476–8486

    PubMed  CAS  Google Scholar 

  • Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M (2005) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 67:1697–1704

    Article  PubMed  CAS  Google Scholar 

  • Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J Biol Chem 276:37409–37414

    Article  PubMed  CAS  Google Scholar 

  • Kim OJ, Ariano MA, Namkung Y, Marinec P, Kim E, Han J, Sibley DR (2008) D2 dopamine receptor expression and trafficking is regulated through direct interactions with ZIP. J Neurochem 106:83–95

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, Grace AA (2006) The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. Cell Mol Life Sci 63:1597–1613

    Article  PubMed  CAS  Google Scholar 

  • Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F (2007) Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J 26:2127–2136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maccarrone M, Battista N, Centonze D (2007) The endocannabinoid pathway in Huntington's disease: a comparison with other neurodegenerative diseases. Prog Neurobiol 81:349–379

    Article  PubMed  CAS  Google Scholar 

  • Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, Bellido I, Tanganelli S, Muller CE, Fisone G, Lluis C, Agnati LF, Franco R, Fuxe K (2008) Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology 54:815–823

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G, Lafenetre P (2009) Roles of the endocannabinoid system in learning and memory. Curr Top Behav Neurosci 1:201–230

    Article  PubMed  CAS  Google Scholar 

  • Martini L, Waldhoer M, Pusch M, Kharazia V, Fong J, Lee JH, Freissmuth C, Whistler JL (2007) Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 21:802–811

    Article  PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    Article  PubMed  CAS  Google Scholar 

  • Meschler JP, Conley TJ, Howlett AC (2000) Cannabinoid and dopamine interaction in rodent brain: effects on locomotor activity. Pharmacol Biochem Behav 67:567–573

    Article  PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    Article  PubMed  CAS  Google Scholar 

  • Navarro G, Carriba P, Gandia J, Ciruela F, Casado V, Cortes A, Mallol J, Canela EI, Lluis C, Franco R (2008) Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. Sci World J 8:1088–1097

    Article  CAS  Google Scholar 

  • Niehaus JL, Liu Y, Wallis KT, Egertova M, Bhartur SG, Mukhopadhyay S, Shi S, He H, Selley DE, Howlett AC, Elphick MR, Lewis DL (2007) CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a. Mol Pharmacol 72:1557–1566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  PubMed  CAS  Google Scholar 

  • Pan B, Hillard CJ, Liu QS (2008) D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling. J Neurosci 28:14018–14030

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Patel S, Rademacher DJ, Hillard CJ (2003) Differential regulation of the endocannabinoids anandamide and 2-arachidonylglycerol within the limbic forebrain by dopamine receptor activity. J Pharmacol Exp Ther 306:880–888

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG, Ross RA (2002) Cannabinoid receptors and their ligands. Prostaglandins Leukot Essent Fat Acids 66:101–121

    Article  CAS  Google Scholar 

  • Picetti R, Saiardi A, Abdel Samad T, Bozzi Y, Baik JH, Borrelli E (1997) Dopamine D2 receptors in signal transduction and behavior. Crit Rev Neurobiol 11:121–142

    Article  PubMed  CAS  Google Scholar 

  • Pickel VM, Chan J, Kearn CS, Mackie K (2006) Targeting dopamine D2 and cannabinoid-1 (CB1) receptors in rat nucleus accumbens. J Comp Neurol 495:299–313

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pisani V, Madeo G, Tassone A, Sciamanna G, Maccarrone M, Stanzione P, Pisani A (2011) Homeostatic changes of the endocannabinoid system in Parkinson's disease. Mov Disord 26:216–222

    Article  PubMed  Google Scholar 

  • Przybyla JA, Watts VJ (2010) Ligand-induced regulation and localization of cannabinoid CB1 and dopamine D2L receptor heterodimers. J Pharmacol Exp Ther 332:710–719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Riedel G, Davies SN (2005) Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol 168:445–477

    Article  PubMed  CAS  Google Scholar 

  • Rios C, Gomes I, Devi LA (2006) mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 148:387–395

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288:154–157

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues LC, Conti CL, Nakamura-Palacios EM (2011) Clozapine and SCH 23390 prevent the spatial working memory disruption induced by Delta9-THC administration into the medial prefrontal cortex. Brain Res 1382:230–237

    Article  PubMed  CAS  Google Scholar 

  • Romero J, Garcia L, Cebeira M, Zadrozny D, Fernandez-Ruiz JJ, Ramos JA (1995) The endogenous cannabinoid receptor ligand, anandamide, inhibits the motor behavior: role of nigrostriatal dopaminergic neurons. Life Sci 56:2033–2040

    Article  PubMed  CAS  Google Scholar 

  • Smith FD, Oxford GS, Milgram SL (1999) Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem 274:19894–19900

    Article  PubMed  CAS  Google Scholar 

  • So CH, Varghese G, Curley KJ, Kong MM, Alijaniaram M, Ji X, Nguyen T, O'dowd BF, George SR (2005) D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol Pharmacol 68:568–578

    PubMed  CAS  Google Scholar 

  • Solinas M, Goldberg SR, Piomelli D (2008) The endocannabinoid system in brain reward processes. Br J Pharmacol 154:369–383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Solinas M, Tanda G, Wertheim CE, Goldberg SR (2010) Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: possible involvement of D(2)-induced formation of anandamide. Psychopharmacology (Berl) 209:191–202

    Article  CAS  Google Scholar 

  • Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. Handb Exp Pharmacology 168:327–365

    Google Scholar 

  • Szabo B, Muller T, Koch H (1999) Effects of cannabinoids on dopamine release in the corpus striatum and the nucleus accumbens in vitro. J Neurochem 73:1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Thanos PK, Gopez V, Delis F, Michaelides M, Grandy DK, Wang GJ, Kunos G, Volkow ND (2011) Upregulation of cannabinoid type 1 receptors in dopamine D2 receptor knockout mice is reversed by chronic forced ethanol consumption. Alcohol Clin Exp Res 35:19–27

    Article  PubMed Central  PubMed  Google Scholar 

  • van der Stelt M, Di Marzo V (2003) The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 480:133–150

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Tomasi D (2012) Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol 52:321–336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  PubMed  CAS  Google Scholar 

  • Zarrindast MR, Dorrani M, Lachinani R, Rezayof A (2010) Blockade of dorsal hippocampal dopamine receptors inhibits state-dependent learning induced by cannabinoid receptor agonist in mice. Neurosci Res 67:25–32

    Article  PubMed  CAS  Google Scholar 

  • Zenko M, Zhu Y, Dremencov E, Ren W, Xu L, Zhang X (2011) Requirement for the endocannabinoid system in social interaction impairment induced by coactivation of dopamine D1 and D2 receptors in the piriform cortex. J Neurosci Res 89:1245–1258

    Article  PubMed  CAS  Google Scholar 

  • Zhu PJ (2006) Endocannabinoid signaling and synaptic plasticity in the brain. Crit Rev Neurobiol 18:113–124

    Article  PubMed  CAS  Google Scholar 

  • Zou S, Li L, Pei L, Vukusic B, Van Tol HH, Lee FJ, Wan Q, Liu F (2005) Protein–protein coupling/uncoupling enables dopamine D2 receptor regulation of AMPA receptor-mediated excitotoxicity. J Neurosci 25:4385–4395

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mary Abood for kindly providing the human CB1 cDNA and Dr. Ken Mackie for providing the rat CB1 cDNA. We also thank Dr. Martin Lohse for providing the epac1-camp plasmid. We thank Beryl Luk for technical assistance and Dr. Tim Beischlag for reviewing the manuscript. This study was funded by a Young Investigator Grant from the MIND BC Foundation and from a grant from the William and Ada Isabelle Steel Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. S. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.S., Lee, F.J.S. Delineation of Domains Within the Cannabinoid CB1 and Dopamine D2 Receptors That Mediate the Formation of the Heterodimer Complex. J Mol Neurosci 53, 10–21 (2014). https://doi.org/10.1007/s12031-013-0181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0181-7

Keywords

Navigation