Skip to main content
Log in

Reassessment of the Role of the Central Cholinergic System

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The central cholinergic system is believed to be involved in the control of many physiological functions and is an important pharmacological target for numerous neurological pathologies. Here, we summarize our recent observations regarding this topic that we obtained by studying genetically modified mice devoid of particular cholinesterase molecular forms. Our results, collected from mice with deficits of functional cholinesterases in the brain, suggest that the increase in the level of acetylcholine (ACh) has an impact on cognition only in the situation when extracellular ACh is low. Furthermore, we confirmed the central control of movement coordination, which could be of importance for the management of motor problems in patients with Parkinson's disease. At last, we provide clear evidence that while the hypothermic effect of the muscarinic agonist oxotremorine is based on a central mechanism, in contrast, the acetylcholinesterase inhibitor donepezil decreases body temperature by its action in the periphery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abitbol M, Menini C, Delezoide AL, Rhyner T, Vekemans M, Mallet J (1993) Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nat Genet 4:147–153

    Article  CAS  PubMed  Google Scholar 

  • Apicella P (2007) Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci 30:299–306

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Dean RL III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  CAS  PubMed  Google Scholar 

  • Bernard V, Décossas M, Liste I, Bloch B (2006) Intraneuronal trafficking of G-protein-coupled receptors in vivo. Trends Neurosci 29:140–147

    Article  CAS  PubMed  Google Scholar 

  • Bernard V, Girard E, Hrabovska A, Camp S, Taylor P, Plaud B, Krejci E (2011) Distinct localization of collagen Q and PRiMA forms of acetylcholinesterase at the neuromuscular junction. Mol Cell Neurosci 46:272–281

    Article  CAS  PubMed  Google Scholar 

  • Blong RM, Bedows E, Lockridge O (1997) Tetramerization domain of human butyrylcholinesterase is at the C-terminus. Biochem J 327(Pt 3):747–757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221:564–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bohnen NI, Müller MLTM, Kotagal V, Koeppe RA, Kilbourn MR, Gilman S, Albin RL, Frey KA (2012) Heterogeneity of cholinergic denervation in Parkinson's disease without dementia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 32:1609–1617

    Article  CAS  Google Scholar 

  • Bonsi P, Cuomo D, Martella G, Madeo G, Schirinzi T, Puglisi F, Ponterio G, Pisani A (2011) Centrality of striatal cholinergic transmission in basal ganglia function. Front Neuroanat 5:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Bouvier M, Collins S, O’Dowd BF, Campbell PT, de Blasi A, Kobilka BK, MacGregor C, Irons GP, Caron MG, Lefkowitz RJ (1989) Two distinct pathways for cAMP-mediated down-regulation of the beta 2-adrenergic receptor. Phosphorylation of the receptor and regulation of its mRNA level. J Biol Chem 264:16786–16792

    CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Camp S, Zhang L, Marquez M, de la Torre B, Long JM, Bucht G, Taylor P (2005) Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion. Chem Biol Interact 157–158:79–86

    Article  PubMed  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Davis KL, Berger PA (1978) Pharmacological investigations of the cholinergic imbalance hypotheses of movement disorders and psychosis. Biol Psychiatry 13:23–49

    CAS  PubMed  Google Scholar 

  • De Castro BM, Pereira GS, Magalhães V, Rossato JI, De Jaeger X, Martins-Silva C, Leles B, Lima P, Gomez MV, Gainetdinov RR et al (2009) Reduced expression of the vesicular acetylcholine transporter causes learning deficits in mice. Genes Brain Behav 8:23–35

    Article  PubMed  Google Scholar 

  • De Jaeger X, Cammarota M, Prado MAM, Izquierdo I, Prado VF, Pereira GS (2013) Decreased acetylcholine release delays the consolidation of object recognition memory. Behav Brain Res 238:62–68

    Article  PubMed  Google Scholar 

  • Dobbertin A, Hrabovska A, Dembele K, Camp S, Taylor P, Krejci E, Bernard V (2009) Targeting of acetylcholinesterase in neurons in vivo: a dual processing function for the proline-rich membrane anchor subunit and the attachment domain on the catalytic subunit. J Neurosci 29:4519–4530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duysen EG, Stribley JA, Fry DL, Hinrichs SH, Lockridge O (2002) Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Brain Res Dev Brain Res 137:43–54

    Article  CAS  PubMed  Google Scholar 

  • Duysen EG, Li B, Darvesh S, Lockridge O (2007) Sensitivity of butyrylcholinesterase knockout mice to (–)-huperzine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer's disease drugs and indicates butyrylcholinesterase function in neurotransmission. Toxicology 233:60–69

    Article  CAS  PubMed  Google Scholar 

  • Farar V, Mohr F, Legrand M, Lamotte d’Incamps B, Cendelin J, Leroy J, Abitbol M, Bernard V, Baud F, Fournet V et al (2012) Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J Neurochem 122:1065–1080

    Article  CAS  PubMed  Google Scholar 

  • Farar V, Hrabovska A, Krejci E, Myslivecek J (2013) Developmental adaptation of central nervous system to extremely high acetylcholine levels. PloS One 8:e68265

    Google Scholar 

  • Farlow MR, Cummings JL (2007) Effective pharmacologic management of Alzheimer's disease. Am J Med 120:388–397

    Article  CAS  PubMed  Google Scholar 

  • Friedman MJ, Jaffe JH (1969) A central hypothermic response to pilocarpine in the mouse. J Pharmacol Exp Ther 167:34–44

    CAS  PubMed  Google Scholar 

  • Gordon CJ, Heath JE (1986) Integration and central processing in temperature regulation. Annu Rev Physiol 48:595–612

    Article  CAS  PubMed  Google Scholar 

  • Grauer E, Levy A (2007) Oxotremorine-induced hypothermia as a method for evaluating long-term neuronal changes following poisoning by cholinesterase inhibitors in rats. Toxicology 242:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hartmann J, Kiewert C, Duysen EG, Lockridge O, Greig NH, Klein J (2007) Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J Neurochem 100:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Hirano S, Shinotoh H, Shimada H, Aotsuka A, Tanaka N, Ota T, Sato K, Ito H, Kuwabara S, Fukushi K et al (2010) Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. Brain J Neurol 133:2058–2068

    Article  Google Scholar 

  • Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci U S A 84:5976–5980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hrabovska A, Duysen EG, Sanders JD, Murrin LC, Lockridge O (2005) Delivery of human acetylcholinesterase by adeno-associated virus to the acetylcholinesterase knockout mouse. Chem Biol Interact 157–158:71–78

    Article  PubMed  Google Scholar 

  • Hrabovska A, Farar V, Bernard V, Duysen EG, Brabec J, Lockridge O, Myslivecek J (2010) Drastic decrease in dopamine receptor levels in the striatum of acetylcholinesterase knock-out mouse. Chem Biol Interact 183:194–201

    Article  CAS  PubMed  Google Scholar 

  • Jellinger K (1988) The pedunculopontine nucleus in Parkinson's disease, progressive supranuclear palsy and Alzheimer's disease. J Neurol Neurosurg Psychiatry 51:540–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J, Hwang YJ, Shin JY, Lee WC, Wie J, Kim KY, Lee MY, Hwang D, Ratan RR, Pae AN et al (2013) Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca(2+) signaling in Huntington's disease. Acta Neuropathol (Berl) 125:727–739

    Article  CAS  Google Scholar 

  • Li B, Duysen EG, Volpicelli-Daley LA, Levey AI, Lockridge O (2003) Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice. Pharmacol Biochem Behav 74:977–986

    Article  CAS  PubMed  Google Scholar 

  • Mallick BN, Joseph MM (1997) Role of cholinergic inputs to the medial preoptic area in regulation of sleep-wakefulness and body temperature in freely moving rats. Brain Res 750:311–317

    Article  CAS  PubMed  Google Scholar 

  • Massoulié J, Bon S (2006) The C-terminal T peptide of cholinesterases: structure, interactions, and influence on protein folding and secretion. J Mol Neurosci MN 30:233–236

    Article  Google Scholar 

  • Massoulié J, Perrier N, Noureddine H, Liang D, Bon S (2008) Old and new questions about cholinesterases. Chem Biol Interact 175:30–44

    Article  PubMed  Google Scholar 

  • Mohr F, Zimmermann M, Klein J (2013) Mice heterozygous for AChE are more sensitive to AChE inhibitors but do not respond to BuChE inhibition. Neuropharmacology 67:37–45

    Article  CAS  PubMed  Google Scholar 

  • Moser VC (1995) Comparisons of the acute effects of cholinesterase inhibitors using a neurobehavioral screening battery in rats. Neurotoxicol Teratol 17:617–625

    Article  CAS  PubMed  Google Scholar 

  • Myers RD, Yaksh TL (1969) Control of body temperature in the unanaesthetized monkey by cholinergic and aminergic systems in the hypothalamus. J Physiol 202:483–500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pepeu G, Giovannini MG (2010) Cholinesterase inhibitors and memory. Chem Biol Interact 187:403–408

    Article  CAS  PubMed  Google Scholar 

  • Perrier AL, Massoulié J, Krejci E (2002) PRiMA: the membrane anchor of acetylcholinesterase in the brain. Neuron 33:275–285

    Article  CAS  PubMed  Google Scholar 

  • Perrier NA, Khérif S, Perrier AL, Dumas S, Mallet J, Massoulié J (2003) Expression of PRiMA in the mouse brain: membrane anchoring and accumulation of “tailed” acetylcholinesterase. Eur J Neurosci 18:1837–1847

    Article  PubMed  Google Scholar 

  • Pisani A, Bonsi P, Picconi B, Tolu M, Giacomini P, Scarnati E (2001) Role of tonically-active neurons in the control of striatal function: cellular mechanisms and behavioral correlates. Prog Neuropsychopharmacol Biol Psychiatry 25:211–230

    Article  CAS  PubMed  Google Scholar 

  • Pope C, Karanth S, Liu J (2005) Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environ Toxicol Pharmacol 19:433–446

    Article  CAS  PubMed  Google Scholar 

  • Prado VF, Martins-Silva C, de Castro BM, Lima RF, Barros DM, Amaral E, Ramsey AJ, Sotnikova TD, Ramirez MR, Kim H-G et al (2006) Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron 51:601–612

    Article  CAS  PubMed  Google Scholar 

  • Prado VF, Roy A, Kolisnyk B, Gros R, Prado MAM (2013) Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J 450:265–274

    Article  CAS  PubMed  Google Scholar 

  • Robinson L, Platt B, Riedel G (2011) Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 221:443–465

    Article  CAS  PubMed  Google Scholar 

  • Rochester L, Yarnall AJ, Baker MR, David RV, Lord S, Galna B, Burn DJ (2012) Cholinergic dysfunction contributes to gait disturbance in early Parkinson's disease. Brain J Neurol 135:2779–2788

    Article  Google Scholar 

  • Scarr E, Gibbons AS, Neo J, Udawela M, Dean B (2013) Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 7:55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simon S, Krejci E, Massoulié J (1998) A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway. EMBO J 17:6178–6187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith R, Chung H, Rundquist S, Maat-Schieman MLC, Colgan L, Englund E, Liu YJ, Roos RAC, Faull RLM, Brundin P et al (2006) Cholinergic neuronal defect without cell loss in Huntington's disease. Hum Mol Genet 15:3119–3131

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Raju D, Nanda B, Pare J-F, Galvan A, Wichmann T (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 78:60–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun M, Lee CJ, Shin HS (2007) Reduced nicotinic receptor function in sympathetic ganglia is responsible for the hypothermia in the acetylcholinesterase knockout mouse. J Physiol 578:751–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terry AV Jr (2008) Role of the central cholinergic system in the therapeutics of schizophrenia. Curr Neuropharmacol 6:286–292

    Article  CAS  PubMed  Google Scholar 

  • Wenning GK, Ebersbach G, Verny M, Chaudhuri KR, Jellinger K, McKee A, Poewe W, Litvan I (1999) Progression of falls in postmortem-confirmed Parkinsonian disorders. Mov Disord Off J Mov Disord Soc 14:947–950

    Article  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Wilder PJ, Stribley J, Chatonnet A, Rizzino A, Taylor P, Hinrichs SH, Lockridge O (1999) Knockout of one acetylcholinesterase allele in the mouse. Chem Biol Interact 119–120:289–299

    Article  PubMed  Google Scholar 

  • Xie W, Stribley JA, Chatonnet A, Wilder PJ, Rizzino A, McComb RD, Taylor P, Hinrichs SH, Lockridge O (2000) Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J Pharmacol Exp Ther 293:896–902

    CAS  PubMed  Google Scholar 

  • Yarnall A, Rochester L, Burn DJ (2011) The interplay of cholinergic function, attention, and falls in Parkinson's disease. Mov Disord Off J Mov Disord Soc 26:2496–2503

    Article  Google Scholar 

  • Yoburn BC, Purohit V, Patel K, Zhang Q (2004) Opioid agonist and antagonist treatment differentially regulates immunoreactive mu-opioid receptors and dynamin-2 in vivo. Eur J Pharmacol 498:87–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants grant VEGA 1/1139/12 (AH), APVV grants SK-FR- 0031-09/Stefanik (AH and EK), SK-FR-0048-11/Stefanik (AH and EK), Association Francaise contre les Myopathies (EK and AH) and Université Paris Descartes collaborative grant (EK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Hrabovska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrabovska, A., Krejci, E. Reassessment of the Role of the Central Cholinergic System. J Mol Neurosci 53, 352–358 (2014). https://doi.org/10.1007/s12031-013-0164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0164-8

Keywords

Navigation