Skip to main content

Advertisement

Log in

Postnatal Dynamics of Zeb2 Expression in Rat Brain: Analysis of Novel 3′ UTR Sequence Reveals a miR-9 Interacting Site

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

ZEB2 is a transcription factor with established roles in neurogenesis but no defined function in postnatal brain despite extensive neuronal expression in telencephalic structures. Multiple, incompletely annotated transcripts derive from the Zeb2 locus; the purpose of the present study was to structurally characterize rat brain Zeb2 transcripts with respect to 3′ untranslated (UTR) sequence in order to understand Zeb2 transcript regulation including possible interactions with regulatory molecules such as neuronal miRNAs. We cloned a 5054-nucleotide Zeb2 3′ UTR that is included in the most abundant Zeb2 transcript in neonatal rat brain. Unique features of the distal 3′ UTR region included a number of brain-specific miRNA target sites; a highly conserved miR-9 target site at 3′ UTR position 4097 was selected for functional verification in transfection experiments. Parallel analysis of Zeb2 transcript, ZEB2 protein and miR-9 levels across postnatal brain cortical development revealed a significant accumulation of ZEB2 protein levels only between postnatal days P2 and P5 that was associated with an acute loss of postnatal miR-9 expression in cortex. These studies demonstrate novel features of Zeb2 gene expression in postnatal rat brain and highlight the importance of full transcript annotation for identifying the complement of potential transcript-interacting regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anders G, Mackowiak SD, Jens M, Maaskola J, Kuntzagk A, Rajewsky N, Landthaler M, Dieterich C (2012) doRiNA: a database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 40:D180–D186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bolognani F, Contente-Cuomo T, Perrone-Bizzozero NI (2010) Novel recognition motifs and biological functions of the RNA-binding protein HuD revealed by genome-wide identification of its targets. Nuc Acids Res 38:117–130

    Article  CAS  Google Scholar 

  • Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, Bartel DP (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24:992–1009

    Article  CAS  PubMed  Google Scholar 

  • Christoffersen NR, Silahtaroglu A, Orom UA, Kauppinen S, Lund AH (2007) miR-200b mediates post-transcriptional repression of ZFHX1B. RNA 13:1172–1178

    Article  CAS  PubMed  Google Scholar 

  • Chew LJ, Murphy D, Carter DA (1994) Alternatively polyadenylated vasoactive intestinal peptide messenger ribonucleic acids are differentially regulated at the level of stability. Mol Endo 8:603–613

    CAS  Google Scholar 

  • Dajas-Bailador F, Bonev B, Garcez P, Stanley P, Guillemot F, Papalopulu N (2012) microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 15:697–699

    Article  CAS  Google Scholar 

  • Dassi E, Malossini A, Re A, Mazza T, Tebaldi T, Caputi L, Quattrone A (2011) AURA: Atlas of UTR Regulatory Activity. Bioinformatics 28:142–144

  • Davies JS, Klein DC, Carter DA (2011) Selective genomic targeting by FRA-2/FOSL2 transcription factor: regulation of the Rgs4 gene is mediated by a variant activator protein 1 (AP-1) promoter sequence/CREB-binding protein (CBP) mechanism. J Biol Chem 286:15227–15239

    Article  CAS  PubMed  Google Scholar 

  • Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Kasti MM, Wells T, Carter DA (2012) A novel long-range enhancer regulates postnatal expression of Zeb2: implications for Mowat–Wilson syndrome phenotypes. Hum Mol Genet 21:5429–5442

    Article  CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601

    Article  CAS  PubMed  Google Scholar 

  • Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, Banfi S, Gennarino VA, Horner DS, Pavesi G, Picardi E, Pesole G (2010) UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38:D75–D80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gruber AR, Fallmann J, Kratochvill F, Kovarik P, Hofacker IL (2011) AREsite: a database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res 39:D66–D69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ince-Dunn G, Okano HJ, Jensen KB, Park WY, Zhong R, Ule J, Mele A, Fak JJ, Yang C, Zhang C, Yoo J, Herre M, Okano H, Noebels JL, Darnell RB (2012) Neuronal Elav-like (Hu) proteins regulate RNA splicing and abundance to control glutamate levels and neuronal excitability. Neuron 75:1067–1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, Agami RA (2010) Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12:1014–1020

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Adelstein RS, Kawamoto S (2009) Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem 284:31052–31061

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, Nichols M, John B (2010) A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res 38:e98

    Article  PubMed Central  PubMed  Google Scholar 

  • Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281

    Article  CAS  PubMed  Google Scholar 

  • Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD (2008) Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci 28:11720–11730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu DZ, Ander BP, Tian Y, Stamova B, Jickling GC, Davis RR, Sharp FR (2012) Integrated analysis of mRNA and microRNA expression in mature neurons, neural progenitor cells and neuroblastoma cells. Gene 495:120–127

    Article  CAS  PubMed  Google Scholar 

  • Lyck L, Krøigård T, Finsen B (2007) Unbiased cell quantification reveals a continued increase in the number of neocortical neurones during early post-natal development in mice. Eur J Neurosci 26:1749–1764

    Article  PubMed  Google Scholar 

  • Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Man PS, Wells T, Carter DA (2007) Egr-1-d2EGFP transgenic rats identify transient populations of neurons and glial cells during postnatal brain development. Gene Expr Patterns 7:872–883

    Google Scholar 

  • Moreau MP, Bruse SE, Jornsten R, Liu Y, Brzustowicz LM (2013) Chronological changes in microRNA expression in the developing human brain. PLoS One 8:e60480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nelles L, Van de Putte T, van Grunsven L, Huylebroeck D, Verschueren K (2003) Organization of the mouse Zfhx1b gene encoding the two-handed zinc finger repressor Smad-interacting protein-1. Genomics 82:460–469

    Article  CAS  PubMed  Google Scholar 

  • Prime G, Horn G, Sutor B (2000) Time-related changes in connexin mRNA abundance in the rat neocortex during postnatal development. Brain Res Dev Brain Res 119:111–125

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Sætrom P (2012) Target gene expression levels and competition between transfected and endogenous microRNAs are strong confounding factors in microRNA high-throughput experiments. Silence 3:3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sangiao-Alvarellos S, Manfredi-Lozano M, Ruiz-Pino F, Navarro VM, Sánchez-Garrido MA, Leon S, Dieguez C, Cordido F, Matagne V, Dissen GA, Ojeda SR, Pinilla L, Tena-Sempere M (2013) Changes in hypothalamic expression of the Lin28/let-7 system and related microRNAs during postnatal maturation and after experimental manipulations of puberty. Endo 154:942–955

    CAS  Google Scholar 

  • Seuntjens E, Nityanandam A, Miquelajauregui A, Debruyn J, Stryjewska A, Goebbels S, Nave KA, Huylebroeck D, Tarabykin V (2009) Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat Neurosci 12:1373–1380

    Article  CAS  PubMed  Google Scholar 

  • Smibert P, Miura P, Westholm JO, Shenker S, May G, Duff MO, Zhang D, Eads BD, Carlson J, Brown JB, Eisman RC, Andrews J, Kaufman T, Cherbas P, Celniker SE, Graveley BR, Lai EC (2012) Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep 1:277–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van den Berghe V, Stappers E, Vandesande B, Dimidschstein J, Kroes R, Francis A, Conidi A, Lesage F, Dries R, Cazzola S, Berx G, Kessaris N, Vanderhaeghen P, van Ijcken W, Grosveld FG, Goossens S, Haigh JJ, Fishell G, Goffinet A, Aerts S, Huylebroeck D, Seuntjens E (2013) Directed migration of cortical interneurons depends on the cell-autonomous action of Sip1. Neuron 77:70–82

    Article  PubMed  Google Scholar 

  • Zhang C, Darnell RB (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat Biotechnol 29:607–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cardiff School of Biosciences and IAESTE UK and Slovenia (The International Association for the Exchange of Students for Technical Experience).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Carter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 32 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kropivšek, K., Pickford, J. & Carter, D.A. Postnatal Dynamics of Zeb2 Expression in Rat Brain: Analysis of Novel 3′ UTR Sequence Reveals a miR-9 Interacting Site. J Mol Neurosci 52, 138–147 (2014). https://doi.org/10.1007/s12031-013-0146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0146-x

Keywords

Navigation