Skip to main content
Log in

Progress-Curve Analysis Through Integrated Rate Equations and Its Use to Study Cholinesterase Reaction Dynamics

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Michaelis and Menten found the direct mathematical analysis of their studied enzyme-catalyzed reaction unrealistic 100 years ago, and hence, they avoided this problem by correct adaptation and analysis of the experiment, i.e., differentiation of the progress-curve data into rates. However, the most elegant and ideal simplification of the evaluation of kinetics parameters from progress curves can be performed when the algebraic integration of the rate equation results in an explicit mathematical equation that describes the dynamics of the model system of the reaction. Recently, it was demonstrated that such an alternative approach can be considered for enzymes that obey the generalized Michaelis–Menten reaction dynamics, although its use is now still limited for cholinesterases, which show kinetics that deviate from saturation-like hyperbolic behavior at high concentrations of charged substrates. However, a mathematical approach is reviewed here that might provide an alternative to the decades-old problem of data analysis of cholinesterase-catalyzed reactions, through the more complex Webb integrated rate equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adomian G (1994) Solving frontier problems of physics: the decomposition method. Kluwer, Boston

    Google Scholar 

  • Beal SL (1982) On the solution to the Michaelis–Menten equation. J Pharmacokinet Biopharm 10:109–119

    Article  CAS  PubMed  Google Scholar 

  • Berberan-Santos MN (2010) A general treatment of Henri–Michaelis–Menten enzyme kinetics: exact series solution and approximate analytical solutions. MATCH Commun Math Comput Chem 63:283–318

    CAS  Google Scholar 

  • Bevc S, Konc J, Stojan J, Hodošček M, Penca M, Praprotnik M, Janežič D (2011) ENZO: a web tool for derivation and evaluation of kinetic models of enzyme catalyzed reactions. PLoS One 6:e22265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AJ (1902) Enzyme action. J Chem Soc 81:373–388

    Article  CAS  Google Scholar 

  • Buchner E (1897) Alcoholic fermentation without yeast cells. Berichte der Deutschen Chemischen Gesellschaft 30:117–124

    Article  CAS  Google Scholar 

  • Cornish-Bowden A (2013) The origins of enzyme kinetics. FEBS Lett 587:2725–2730

    Article  CAS  PubMed  Google Scholar 

  • Duggleby RG (2001) Quantitative analysis of the time courses of enzyme-catalyzed reactions. Methods 24:168–174

    Article  CAS  PubMed  Google Scholar 

  • Eisenthal R, Cornish-Bowden A (1974) The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139:715–720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Exnowitz F, Meyer B, Hackl T (2012) NMR for direct determination of K m and V max of enzyme reactions based on the Lambert W function-analysis of progress curves. Biochim Biophys Acta 1824:443–449

    Article  CAS  PubMed  Google Scholar 

  • Goličnik M (2011) Exact and approximate solutions for the decades-old Michaelis–Menten equation: progress-curve analysis through integrated rate equations. Biochem Mol Biol Educ 39:117–125

    Article  PubMed  Google Scholar 

  • Goličnik M (2012) On the Lambert W function and its utility in biochemical kinetics. Biochem Eng J 63:116–123

    Article  Google Scholar 

  • Goličnik M (2013a) ‘Die Kinetik der Invertinwirkung’ of L. Michaelis and M. L. Menten revisited after 100 years: closed-form solutions of genuine invertase reaction dynamics. MATCH Commun. Math Comput Chem 70:63–72

    Google Scholar 

  • Goličnik M (2013b) The integrated Michaelis–Menten rate equation: déjà vu or vu jàdé? J Enzym Inhib Med Chem 28:879–883

    Article  Google Scholar 

  • Goličnik M (2013c) Solution of the Webb equation for kinetics of cholinesterase substrate-inhibition/activation using the Adomian decomposition method. MATCH Commun Math Comput Chem 70:745–758

    Google Scholar 

  • Gonzalez-Parra G, Acedo L, Arenas A (2011) Accuracy of analytical numerical solutions of the Michaelis–Menten equation. Comput Appl Math 30:445–461

    Article  Google Scholar 

  • Henri V (1903) Lois generales de l'action des diastases. Hermann, Paris

    Google Scholar 

  • Johnson KA (2013) A century of enzyme kinetic analysis, 1913 to 2013. FEBS Lett 587:2753–2766

    Article  CAS  PubMed  Google Scholar 

  • Johnson KA, Goody RS (2011) The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50:8264–8269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzmic P (2009) Dynafit—a software package for enzymology. Methods Enzymol 467:247–280

    Article  CAS  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Masson P, Legrand P, Bartels CF, Froment MT, Schopfer LM, Lockridge O (1997) Role of aspartate 70 and tryptophan 82 in binding of succinyldithiocholine to human butyrylcholinesterase. Biochemistry 36:2266–2277

    Article  CAS  PubMed  Google Scholar 

  • Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  • Radić Z, Pickering NA, Vellom DC, Camp S, Taylor P (1993) Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry 32:12074–12084

    Article  PubMed  Google Scholar 

  • Reiner E, Simeon-Rudolf V (2000) Cholinesterase: substrate inhibition and substrate activation. Pflügers Arch – Eur J Physiol 440:R118–R120

    Article  CAS  Google Scholar 

  • Rosenberry TL (2010) Strategies to resolve the catalytic mechanism of acetylcholinesterase. J Mol Neurosci 40:32–39

    Article  CAS  PubMed  Google Scholar 

  • Schnell S, Mendoza C (1997) Closed-form solution for time-dependent enzyme kinetics. J Theor Biol 187:207–212

    Article  CAS  Google Scholar 

  • Stojan J (2013) The significance of low substrate concentration measurements for mechanistic interpretation in cholinesterases. Chem Biol Interact 203:44–50

    Article  CAS  PubMed  Google Scholar 

  • Webb JL (1963) Kinetics of some complex enzyme reaction types. Academic, New York

    Google Scholar 

  • Zavrel M, Kochanowski K, Spiess AC (2010) Comparison of different approaches and computer programs for progress curve analysis of enzyme kinetics. Eng Life Sci 10:191–200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Slovenian Research Agency (grant P1-170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Goličnik.

Appendix

Appendix

Software-user-defined, built-in equations using fourth-order term approximations of solutions for product concentrations in GraphPad Prism 5.

s:

=S0/Kss

R:

=Ks/Kss

t:

=Vm*x/Kss

sR:

=(s + R)*(1 + s)

f0:

=s*(1 + b*s)/sR

f1:

=((−1 + b)*s^2 + R*(1 + b*s*(2 + s)))/sR^2

f2:

=−(2*(−(−1 + b)*R^2 + (−1 + b)*s^3 + R*(1 + 3*s + 3*b*s^2 + b*s^3)))/sR^3

f3:

=6*((1 − b)*R^3 + (b − 1)*s^4 − (b − 1)*R^2*(1 + 4*s) + R*(1 + 4*s + 6*s^2 + 4*b*s^3 + b*s^4))/sR^4

s1:

=−t*f0

s2:

=−(t/2)*s1*f1

s3:

=−(t/3)*(f1*s2 + f2*s1^2/2)

s4:

=−(t/4)*(f1*s3 + f2*s1*s2 + f3*s1^3/6)

Y:

=−Kss*(s1 + s2 + s3 + s4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goličnik, M. Progress-Curve Analysis Through Integrated Rate Equations and Its Use to Study Cholinesterase Reaction Dynamics. J Mol Neurosci 53, 330–334 (2014). https://doi.org/10.1007/s12031-013-0129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0129-y

Keywords

Navigation