Skip to main content
Log in

The Timing of Activity Is a Regulatory Signal During Development of Neural Connections

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In PNS and CNS remarkable rearrangements occur soon after the connections are laid down in the course of embryonic life. These processes clearly follow the period of developmental cell death and mostly take place during the very beginning of postnatal life. They consist in changes of the peripheral fields of neurons, marked by elimination of many inputs, while others undergo further maturation and strengthening. Along the efforts to uncover the signals that regulate development, it turned out that while the initial construction of the circuits is heavily based on chemical cues, the subsequent rearrangement is markedly influence by activity. Here we describe experiments testing the influence on developmental plasticity of a particular aspect of activity, the timing of nerve impulses in the competing inputs. Two recent investigations are reviewed, indicating strikingly similar developmental features in quite different systems, neuromuscular and visual. A sharp contrast between the effects of synchrony and asynchrony emerges, indicating that Hebb-related activity rules are important not only for learning but also for development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Brown MC, Jansen JKS, Van Essen DC (1976) Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. J Physiol 261:387–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buffelli M, Busetto G, Cangiano L, Cangiano A (2002) Perinatal switch from synchronous to asynchronous activity of motoneurons: link with synapse elimination. Proc Natl Acad Sci U S A 99(20):13200–13205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buffelli M, Busetto G, Bidoia C, Favero M, Cangiano A (2004) Activity-dependent synaptic competition at mammalian neuromuscular junctions. News Physiol Sci 19(3):85–91

    PubMed  Google Scholar 

  • Burke RE (1994) Physiology of motor units. In: Engel AG, Franzini-Armstrong C (eds) Miology. McGraw Hill, New York, pp 464–484

    Google Scholar 

  • Busetto G, Buffelli M, Tognana E, Bellico F, Cangiano A (2000) Hebbian mechanisms revealed by electrical stimulation at developing rat neuromuscular junctions. J Neurosci 20(2):685–695

    CAS  PubMed  Google Scholar 

  • Butts DA, Kanold PO, Shatz CJ (2007) A burst-based “Hebbian” learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLoS Biol 5(3):e61

    Article  PubMed Central  PubMed  Google Scholar 

  • Chalupa LM (2009) Retinal waves are unlikely to instruct the formation of eye-specific retinogeniculate projections. Neural Dev 4:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Costanzo EM, Barry JA, Ribchester RR (2000) Competition at silent synapses in reinnervated skeletal muscle. Nat Neurosci 3(7):694–700

    Article  CAS  PubMed  Google Scholar 

  • Crowley JC, Katz LC (2002) Ocular dominance development revisited. Curr Opin Neurobiol 12(1):104–109

    Article  CAS  PubMed  Google Scholar 

  • Favero M, Buffelli M, Cangiano A, Busetto G (2010) The timing of impulse activity shapes the process of synaptic competition at the neuromuscular junction. Neuroscience 167(2):343–353

    Article  CAS  PubMed  Google Scholar 

  • Favero M, Busetto G, Cangiano A (2012) Spike timing plays a key role in synapse elimination at the neuromuscular junction. Proc Natl Acad Sci U S A 109(25):E1667–E1675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Favero M, Cangiano A, Busetto G (2013) Hebb-based rules of neural plasticity: are they ubiquitously important for the refinement of synaptic connections in development? Neuroscientist. doi:10.1177/07385841349148

    PubMed  Google Scholar 

  • Godement P, Salaun J, Imbert M (1984) Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J Comp Neurol 230(4):552–575

    Article  CAS  PubMed  Google Scholar 

  • Hebb D (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hubel DH, Wiesel TN (1965) Binocular interactions in striate cortex of kittens reared with artificial squint. J Neurophysiol 28(6):1041–1059

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278(961):377–409

    Article  CAS  PubMed  Google Scholar 

  • Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31:479–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274(5290):1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13(3):169–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lomo T (1966) Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol Scand 68:128

    Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  PubMed  Google Scholar 

  • Mu Y, Poo MM (2006) Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system. Neuron 50(1):115–125

    Article  CAS  PubMed  Google Scholar 

  • Redfern P (1970) Neuromuscular transmission in new-born rats. J Physiol 209(3):701–709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rothwell J (1994) Control of human voluntary movement, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Shah RD, Crair MC (2008) Retinocollicular synapse maturation and plasticity are regulated by correlated retinal waves. J Neurosci 28(1):292–303

    Article  CAS  PubMed  Google Scholar 

  • Stent GS (1973) A physiological mechanism for Hebb’s postulate of learning. Proc Natl Acad Sci U S A 70(4):997–1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stryker MP, Strickland SL (1984) Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity. Invest Ophtalmol Visual Sciences 25:278

    Google Scholar 

  • Tapia JC, Lichtman JW (2012) Synapse elimination. In: Squire L, Berg D, Bloom F, du Lac S, Ghosh A, Spitzer N. Elsevier, New York (eds) Fundamental neuroscience, Academic Press, New York, pp 437–455

  • Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26(6):1003–1017

    CAS  PubMed  Google Scholar 

  • Zhang J, Ackman JB, Xu HP, Crair MC (2012) Visual map development depends on the temporal pattern of binocular activity in mice. Nat Neurosci 15(2):298–307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge grant support by the Italian Ministry of Education, Universities and Research to GB and AC.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cangiano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favero, M., Cangiano, A. & Busetto, G. The Timing of Activity Is a Regulatory Signal During Development of Neural Connections. J Mol Neurosci 53, 324–329 (2014). https://doi.org/10.1007/s12031-013-0128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0128-z

Keywords

Navigation