Skip to main content
Log in

Localization and Chemical Coding of the Dorsal Motor Vagal Nucleus (DMX) Neurons Projecting to the Porcine Stomach Prepyloric Area in the Physiological State and After Stomach Partial Resection

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The aim of our study was to localize and define immunocytochemical characteristic of the dorsal motor nucleus of the vagus (DMX) neurons projecting to the porcine stomach prepyloric region in the physiological state and after gastric partial resection. To identify the stomach-projecting perikarya, the neuronal retrograde tracer—Fast Blue (FB) was injected into the studied region of control and resection group (RES). In the RES group, on 22nd day after FB injection, the partial resection of the stomach region previously injected with FB was performed. Sections were immunostained with ChAT, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), galanin (GAL), substance P (SP), leu-enkephalin (LENK), and cocaine- and amphetamine-regulated transcript (CART). In the DMX of control and RES group, the stomach-projecting perikarya were found in the entire extent of the nucleus bilaterally. Within control animals, 30.08 ± 1.97 % of the gastric DMX perikarya expressed PACAP, while other substances were found only in the neuronal fibers. In the RES group DMX, PACAP was found in 45.58 ± 2.2 %, VIP in 28.83 ± 3.63 %, NOS in 21.22 ± 3.32 %, and GAL in 5.67 ± 1.49 % of the FB-labeled gastric perikarya. Our data implicate PACAP, VIP, NOS, and GAL as neuronal survival promoting substances and the CART-, LENK-, SP- NOS-, and GAL-immunoreactive processes in control of the gastric vagal neurons in the pig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arciszewski MB, Ekblad E (2005) Effects of vasoactive intestinal peptide and galanin on survival of cultured porcine myenteric neurons. Regul Pept 125:185–192

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CL, Hopkins DA (1998) Neurochemical organization of paratrigeminal nucleus projections to the dorsal vagal complex in the rat. Brain Res 785:49–57

    Article  CAS  PubMed  Google Scholar 

  • Armstrong BD, Hu Z, Abad C et al (2003) Lymphocyte regulation of neuropeptide gene expression after neuronal injury. J Neurosci Res 74:240–247

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR, Carlson NR, Powley TL (1991) Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol 260:R200–R207

    CAS  PubMed  Google Scholar 

  • Brenneman DE (2007) Neuroprotection: a comparative view of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Peptides 28:1720–1726

    Article  CAS  PubMed  Google Scholar 

  • Browning KN, Travagli RA (2010) Plasticity of vagal brainstem circuits in the control of gastric function. Neurogastroenterol Motil 22:1154–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CaÅ‚ka J (2006) The role of nitric oxide in the hypothalamic control of LHRH and oxytocin release, sexual behaviour, and aging of the LHRH and oxytocin neurons. Folia Histochem Cytobiol 44:3–12

    PubMed  Google Scholar 

  • CaÅ‚ka J, Wolf G, Kaleczyc J, WÄ…sowicz K (2004) Increased expression of NADPH-d/nitric oxide synthase after facial axotomy; ultrastructural and light microscopic analysis. Pol J Vet Sci 7:29–31

    Google Scholar 

  • Delgado M, Munoz-Elias EJ, Martinez C, Gomariz RP, Ganea D (1999) VIP and PACAP38 modulate cytokine and nitric oxide production in peritoneal macrophages and macrophage cell lines. Ann N Y Acad Sci 897:401–414

    Article  CAS  PubMed  Google Scholar 

  • Dixon MK, Nathan NA, Hornby PJ (1998) Immunocytochemical distribution of neurokinin 1 receptor in rat dorsal vagal complex. Peptides 19:913–923

    Article  CAS  PubMed  Google Scholar 

  • Dun SL, Castellino SJ, Yang J, Chang JK, Dun NJ (2001) Cocaine- and amphetamine-regulated transcript peptide-immunoreactivity in dorsal motor nucleus of the vagus neurons of immature rats. Brain Res Dev Brain Res 131:93–102

    Article  CAS  PubMed  Google Scholar 

  • Edin R, Lundberg J, Dahlström A, Hökfelt T, Terenius L, Ahlman H (1980) The peptidergic neural control of the feline pylorus. Chir Forum Exp Klin Forsch 1980:233–237

    Google Scholar 

  • Elliott-Hunt CR, Holmes FE, Hartley DM, Perez S, Mufson EJ, Wynick D (2011) Endogenous galanin protects mouse hippocampal neurons against amyloid toxicity in vitro via activation of galanin receptor-2. J Alzheimers Dis 25:455–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ewart WR, Wingate DL (1983) Central representation and opioid modulation of gastric mechanoreceptor activity in the rat. Am J Physiol 244:G27–G32

    CAS  PubMed  Google Scholar 

  • Farkas E, Jansen AS, Loewy AD (1997) Periaqueductal gray matter projection to vagal preganglionic neurons and the nucleus tractus solitarius. Brain Res 764:257–261

    Article  CAS  PubMed  Google Scholar 

  • Fox EA, Powley TL (1985) Longitudal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Res 341:269–282

    Article  CAS  PubMed  Google Scholar 

  • GaÅ„ko M, Rychlik A, CaÅ‚ka J (2013) Immunohistochemical characterization of neurons and neuronal processes in the dorsal vagal nucleus of the pig. Pol J Vet Sci 16:9–16

    PubMed  Google Scholar 

  • Giraudo SQ, Kotz CM, Billington CJ, Levine AS (1998) Association between the amygdala and the nucleus of the solitary tract in mu-opioid induced feeding in the rat. Brain Res 802:184–188

    Article  CAS  PubMed  Google Scholar 

  • Gomariz RP, Martinez C, Abad C, Leceta J, Delgado M (2001) Immunology of VIP: a review and therapeutical perspectives. Curr Pharm Des 7:89–111

    Article  CAS  PubMed  Google Scholar 

  • Gonkowski S, CaÅ‚ka J (2010) Changes in the somatostatin (SOM)-like immunoreactivity within nervous structures of the porcine descending colon under various pathological factors. Exp Mol Pathol 88:416–423

    Article  CAS  PubMed  Google Scholar 

  • Gonkowski S, CaÅ‚ka J (2012) Changes in pituitary adenylate cyclase-activating Peptide 27-like immunoreactive nervous structures in the porcine descending colon during selected pathological processes. J Mol Neurosci 48:777–787

    Article  CAS  PubMed  Google Scholar 

  • Gonkowski S, BurliÅ„ski P, Skobowiat C, Majewski M, CaÅ‚ka J (2010) Inflammation- and axotomy-induced changes in galanin-like immunoreactive (GAL-LI) nerve structures in the porcine descending colon. Acta Vet Hung 58:91–103

    Article  PubMed  Google Scholar 

  • Guo JJ, Browning KN, Rogers RC, Travagli RA (2001) Catecholaminergic neurons in rat dorsal motor nucleus of vagus projected selectively to gastric corpus. Am J Physiol Gastrointest Liver Physiol 280:G361–G367

    CAS  PubMed  Google Scholar 

  • Gwyn DG, Leslie RA, Hopkins DA (1985) Observation on the afferent and efferent organization of the vagus nerve and the innervation of the stomach in the squirrel monkey. J Comp Neurol 239:163–175

    Article  CAS  PubMed  Google Scholar 

  • Hobson SA, Bacon A, Elliot-Hunt CR et al (2010) Galanin acts as a trophic factor to the central and peripheral nervous systems. EXS 102:25–38

    CAS  PubMed  Google Scholar 

  • Jelsing J, Larsen PJ, Vrang N (2008) Identification of cannabinoid type 1 receptor expressing cocaine amphetamine-regulated transcript neurons in the rat hypothalamus and brainstem using in situ hybridization and immunohistochemistry. Neuroscience 154:641–652

    Article  CAS  PubMed  Google Scholar 

  • Jou MJ, Wen CY, Shieh JY (1993) Localization of the stomach-projecting neurons in the dorsal motor nucleus of the vagus nerve in the guinea pig. J Auton Nerv Syst 43:201–208

    Article  CAS  PubMed  Google Scholar 

  • Krowicki ZK, Arimura A, Nathan NA, Hornby PJ (1997a) Hindbrain effects of PACAP on gastric motor function in the rat. Am J Physiol 272:G1221–G1229

    CAS  PubMed  Google Scholar 

  • Krowicki ZK, Nathan NA, Hornby PJ (1997b) Opposing effects of vasoactive intestinal polypeptide on gastric motor function in the dorsal vagal complex and the nucleus raphe obscurus of the rat. J Pharmacol Exp Ther 282:14–22

    CAS  PubMed  Google Scholar 

  • Krowicki ZK, Sharkey KA, Serron SC, Nathan NA, Hornby PJ (1997c) Distribution of nitric oxide synthase in rat dorsal vagal complex and effects of microinjection of nitric oxide compounds upon gastric motor function. J Comp Neurol 377:49–69

    Article  CAS  PubMed  Google Scholar 

  • Leslie RA, Gwyn DG, Hopkins DA (1982) The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res Bull 8:37–43

    Article  CAS  PubMed  Google Scholar 

  • Lewis MW, Travagli RA (2001) Effects of substance P on identified neurons of the rat dorsal motor nucleus of the vagus. Am J Physiol Gastrointest Liver Physiol 281:G164–G172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Chang TM, Coy D, Chey WY (2000) Inhibition of gastric acid secretion in rat stomach by PACAP is mediated by secretin, somatostatin, and PGE2. Am J Physiol Gastrointest Liver Physiol 278:G121–G127

    CAS  PubMed  Google Scholar 

  • Lin LH, Sandra A, Boutelle S, Talman WT (1997) Up-regulation of nitric oxide synthase and its mRNA in vagal motor nuclei following axotomy in rat. Neurosci Lett 221:97–100

    Article  CAS  PubMed  Google Scholar 

  • Liubashina O, Jolkkonen E, Pitkanen A (2000) Projections from the central nucleus of the amygdala to the gastric related area of the dorsal vagal complex: a Phaseolus vulgaris-leucoagglutinin study in rats. Neurosci Lett 291:85–88

    Article  CAS  PubMed  Google Scholar 

  • Maley BE (1996) Immunohistochemical localization of neuropeptides and neurotransmitters in the nucleus solitarius. Chem Senses 21:367–376

    Article  CAS  PubMed  Google Scholar 

  • Moller K, Reimer M, Ekblad E et al (1997) The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating peptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Res 775:166–182

    Article  CAS  PubMed  Google Scholar 

  • Morilak DA, Somogyi P, McIlhinney RA, Chalmers J (1989) An enkephalin-containing pathway from nucleus tractus solitarius to the pressor area of the rostral ventrolateral medulla of the rabbit. Neuroscience 31:187–194

    Article  CAS  PubMed  Google Scholar 

  • Okumura T, Namiki M (1990) Vagal motor neurons innervating the stomach are site-specifically organized in the dorsal motor nucleus of the vagus nerve in rats. J Auton Nerv Syst 29:157–162

    Article  CAS  PubMed  Google Scholar 

  • Okumura T, Yamada H, Motomura W, Kohgo Y (2000) Cocaine–amphetamine-regulated transcript (CART) acts in the central nervous system to inhibit gastric acid secretion via brain corticotropin-releasing factor system. Endocrinology 141:2854–2860

    CAS  PubMed  Google Scholar 

  • Perez SE, Wynick D, Steiner RA, Mufson EJ (2001) Distribution of galaninergic immunoreactivity in the brain of mouse. J Comp Neurol 434:158–185

    Article  CAS  PubMed  Google Scholar 

  • Pickel VM, Chan J, Milner TA (1989) Ultrastructural basis for interactions between central opioids and catecholamines. II. Nuclei of the solitary tracts. J Neurosci 9:2519–2535

    CAS  PubMed  Google Scholar 

  • Piqueras L, Tache Y, Martinez V (2004) Peripheral PACAP inhibits gastric acid secretion through somatostatin release in mice. Br J Pharmacol 142:67–78

    Article  CAS  PubMed  Google Scholar 

  • Plata-Salaman CR, Fukuda A, Minami T, Oomura Y (1989) Substance P effects on the dorsal motor nucleus of the vagus. Brain Res Bull 23:149–153

    Article  CAS  PubMed  Google Scholar 

  • Rutherfurd SD, Widdop RE, Louis WJ, Gundlach AL (1992) Preprogalanin mRNA is increased in vagal motor neurons following axotomy. Brain Res Mol Brain Res 14:261–266

    Article  CAS  PubMed  Google Scholar 

  • Saade NE, Abdallah LE, Barada KA, Atweh SF, Nassar CF (1995) Effects of intracerebral injections of VIP on jejunal alanine absorption and gastric acid secretion in rats. Regul Pept 55:269–276

    Article  CAS  PubMed  Google Scholar 

  • Sandvic AK, Cui GL, Bakke I, Munkvold B, Waldum HL (2001) PACAP stimulates gastric acid secretion in the rat inducing histamine release. Am J Physiol Gastrointest Liver Physiol 281:G997–G1003

    Google Scholar 

  • Shioda S, Gozes I (2011) VIP and PACAP: novel approaches to brain functions and neuroprotection. Curr Pharm Des 17:961

    Article  CAS  PubMed  Google Scholar 

  • Siaud P, Puech R, Assenmacher I, Alonso G (1990) Adrenergic innervation of the dorsal vagal motor nucleus: possible involvement in inhibitory control of gastric acid and pancreatic insulin secretion. Cell Tissue Res 259:535–542

    Article  CAS  PubMed  Google Scholar 

  • Skobowiat C, CaÅ‚ka J, Majewski M (2011) Axotomy induced changes in neuronal plasticity of sympathetic chain ganglia (SChG) neurons supplying descending colon in the pig. Exp Mol Pathol 90:13–18

    Article  CAS  PubMed  Google Scholar 

  • Smedh U, Moran TH (2006) The dorsal vagal complex as a site for cocaine- and amphetamine-regulated transcript peptide to suppress gastric emptying. Am J Physiol Regul Integr Comp Physiol 291:R124–R130

    Article  CAS  PubMed  Google Scholar 

  • Somogyvari-Vigh A, Reglodi D (2004) Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide. Curr Pharm Des 10:2861–2889

    Article  CAS  PubMed  Google Scholar 

  • Spencer SE, Talman WT (1986) Central modulation of gastric pressure by substance P: a comparison with glutamate and acetylcholine. Brain Res 385:371–374

    Article  CAS  PubMed  Google Scholar 

  • Suarez V, Guntinas-Lichius O, Streppel M et al (2006) The axotomy-induced neuropeptides galanin and pituitary adenylate cyclase-activating peptide promote axonal sprouting of primary afferent and cranial motor neurons. Eur J Neurosci 24:1555–1564

    Article  PubMed  Google Scholar 

  • Swindle MM, Moody DC, Philips LD (1992) Swine as models in biomedical research, 1st edn. Iowa State University Press, Ames

    Google Scholar 

  • Tan Z, Fogel R, Jiang C, Zhang X (2004) Galanin inhibits gut-related vagal neurons in rats. J Neurophysiol 91:2330–2343

    Article  CAS  PubMed  Google Scholar 

  • Tornoe K, Hannibal J, Georg B et al (2001) PACAP 1–38 as neurotransmitter in porcine antrum. Regul Pept 101:109–121

    Article  CAS  PubMed  Google Scholar 

  • Travagli RA, Hermann GE, Browning KN, Rogers RC (2003) Musings on the wanderer: what’s new in our understanding of vago-vagal reflexes? III. Activity-dependent plasticity in vago-vagal reflexes controlling the stomach. Am J Physiol Gastrointest Liver Physiol 284:G180–G187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma N, Rettenmeier AW, Schmitz-Spanke S (2011) Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies. Proteomics 11:776–793

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Tache Y (1997) Substance P in the dorsal vagal complex inhibits medullary TRH-induced gastric acid secretion in rats. Am J Physiol 272:G987–G993

    CAS  PubMed  Google Scholar 

  • Yoshida J, Polley EH, Nyhus LM, Donahue PE (1989) Brain stem topography of vagus nerve to the grater curvature of the stomach. J Surg Res 46:60–69

    Article  CAS  PubMed  Google Scholar 

  • Zhao XL, Yanai K, Hashimoto Y, Steinbusch HW, Watanabe T (1996) Effects of unilateral vagotomy on nitric oxide synthase and histamine H3 receptors in the rat dorsal vagal complex. J Chem Neuroanat 11:221–229

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Patterson LM, Berthoud HR (2002) CART in the dorsal vagal complex: sources of immunoreactivity and effects on fos expression and food intake. Brain Res 957:298–310

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Rodriguez WI, Casillas RA et al (1999) Axotomy-induced changes in pituitary adenylate cyclase activating polypeptide (PACAP) and PACAP receptor gene expression in the adult rat facial motor nucleus. J Neurosci Res 57:953–961

    Article  CAS  PubMed  Google Scholar 

  • Zhou SY, Lu YX, Yao H, Owyang C (2008) Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat. Am J Physiol Gastrointest Liver Physiol 294:1201–G1209

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Polish State Committee for Scientific Research number 1890/B/P01/2010/39.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Gańko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gańko, M., Całka, J. Localization and Chemical Coding of the Dorsal Motor Vagal Nucleus (DMX) Neurons Projecting to the Porcine Stomach Prepyloric Area in the Physiological State and After Stomach Partial Resection. J Mol Neurosci 52, 90–100 (2014). https://doi.org/10.1007/s12031-013-0102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0102-9

Keywords

Navigation