Skip to main content
Log in

Impact of Vitamin A Supplementation on RAR Gene Expression in Multiple Sclerosis Patients

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Vitamin A and its derivatives have been shown to modulate the immune system via retinoic acid receptor (RAR). This study explored the impact of retinyl palmitate supplementation on RAR subtype gene expression in peripheral blood mononuclear cells (PBMCs) in multiple sclerosis (MS) patients. The study designed as a double-blind randomized clinical trial in which relapsing remitting multiple sclerosis patients were evaluated. Both groups received one capsule 50,000 IU vitamin D3 per 2 weeks and one intramuscular injection interferon beta-1a per week. The intervention group received one 25,000 IU retinyl palmitate capsule daily for 6 months and the placebo group received one placebo capsule daily. The PBMCs were isolated from participants and the expression level changes of RAR-α and RAR-γ genes were determined by real-time PCR. After supplementation, in the intervention group, the RAR-α gene expression level was significantly decreased compared to the placebo group (p = 0.03); however, the expression of RAR-γ gene did not significantly change (p = 0.10). These results show that vitamin A supplementation can significantly downregulate the expression of RAR-α gene in PBMCs of MS patients that suggest the presence of in vivo regulatory mechanisms for the action of vitamin A on the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberts D, Ranger-Moore J et al (2004) Safety and efficacy of dose-intensive oral vitamin A in subjects with sun-damaged skin. Clin Cancer Res 10(6):1875–1880

    Article  PubMed  CAS  Google Scholar 

  • Aranami T, Yamamura T (2008) Th17 cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int 57(2):115–120

    Article  PubMed  CAS  Google Scholar 

  • Ballow M, Wang X et al (2003) Expression and regulation of nuclear retinoic acid receptors in human lymphoid cells. J Clin Immunol 23(1):46–54

    Article  PubMed  CAS  Google Scholar 

  • Dollé P (2009) Developmental expression of retinoic acid receptors (RARs). Nucl Recep Signal 7:e006

    Google Scholar 

  • Feart C, Pallet V et al (2005) Aging affects the retinoic acid and the triiodothyronine nuclear receptor mRNA expression in human peripheral blood mononuclear cells. Eur J Endocrinol 152(3):449–458

    Article  PubMed  CAS  Google Scholar 

  • Gjøen T, Bjerkelund T et al (1987) Liver takes up retinol-binding protein from plasma. J Biol Chem 262(23):10926–10930

    PubMed  Google Scholar 

  • Green S, Chambon P (1988) Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4(11):309–314

    Article  PubMed  CAS  Google Scholar 

  • Gudas LJ, Sporn MB et al (1994) Cellular biology and biochemistry of the retinoids. The Retinoids: Biology, Chemistry, and Medicine 1994:443–520

    Google Scholar 

  • Halevy O, Arazi Y et al (1994) Retinoic acid receptor-alpha gene expression is modulated by dietary vitamin A and by retinoic acid in chicken T lymphocytes. J Nutr 124(11):2139–2146

    PubMed  CAS  Google Scholar 

  • Heller J (1975) Interactions of plasma retinol-binding protein with its receptor. Specific binding of bovine and human retinol-binding protein to pigment epithelium cells from bovine eyes. J Biol Chem 250(10):3613–3619

    PubMed  CAS  Google Scholar 

  • Holmøy T, Hestvik ALK (2008) Multiple sclerosis: immunopathogenesis and controversies in defining the cause. Curr Opin Infect Dis 21(3):271–278

    Article  PubMed  Google Scholar 

  • Honarvar NM, Harirchian MH et al (2013) The effect of vitamin a supplementation on retinoic acid-related orphan receptor γt (RORγt) and interleukin-17 (IL-17) gene expression in avonex-treated multiple sclerotic patients. J Mol Neurosci 1–5

  • Idres N, Marill J et al (2002) Activation of retinoic acid receptor-dependent transcription by all-trans-retinoic acid metabolites and isomers. J Biol Chem 277(35):31491–31498

    Article  PubMed  CAS  Google Scholar 

  • Iwata M, Eshima Y et al (2003) Retinoic acids exert direct effects on T cells to suppress Th1 development and enhance Th2 development via retinoic acid receptors. Int Immunol 15(8):1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Jafarirad S, Siassi F et al (2012a) The effect of vitamin a supplementation on biochemical parameters in multiple sclerosis patients. Iranian Red Cresc Med J 15(3):194–198

    Article  Google Scholar 

  • Jafarirad S, Siassi F et al (2012b) The effect of vitamin A supplementation on stimulated T-cell proliferation with myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. J Neurosci Rural Pract 3(3):294–298

    Article  PubMed  Google Scholar 

  • Lefebvre P, Benomar Y et al (2010) Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab 21(11):676–683

    Article  PubMed  CAS  Google Scholar 

  • Lovett-Racke AE, Racke MK (2002) Retinoic acid promotes the development of Th2-like human myelin basic protein-reactive T cells. Cell Immunol 215(1):54–60

    Article  PubMed  CAS  Google Scholar 

  • Marill J, Cresteil T et al (2000) Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites. Mol Pharmacol 58(6):1341–1348

    PubMed  CAS  Google Scholar 

  • Mottaghi A, Salehi E, Sezavar H et al (2013) The influence of vitamin A supplementation on Foxp3 and TGF gene expression in atherosclerosis patients. J Nutrigenet Nutrigenomics 5(6):314–326

    Google Scholar 

  • Park EY, Dillard A et al (2005) Retinol inhibits the growth of all-trans-retinoic acid-sensitive and all-trans-retinoic acid-resistant colon cancer cells through a retinoic acid receptor-independent mechanism. Cancer Res 65(21):9923–9933

    Article  PubMed  CAS  Google Scholar 

  • Qu ZX, Pliskin N et al (2001) Etretinate augments interferon beta-1b effects on suppressor cells in multiple sclerosis. Arch Neurol 58(1):87–90

    Article  PubMed  CAS  Google Scholar 

  • Racke MK, Bonomo A et al (1994) Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 180(5):1961–1966

    Article  PubMed  CAS  Google Scholar 

  • Racke MK, Burnett D et al (1995) Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J Immunol 154(1):450–458

    PubMed  CAS  Google Scholar 

  • Rhinn M, Dollé P (2012) Retinoic acid signalling during development. Development 139(5):843–858

    Article  PubMed  CAS  Google Scholar 

  • Sedjo RL, Ranger-Moore J et al (2004) Circulating endogenous retinoic acid concentrations among participants enrolled in a randomized placebo-controlled clinical trial of retinyl palmitate. Cancer Epidemiol Biomark Prev 13(11):1687–1692

    CAS  Google Scholar 

  • Semba RD (1998) The role of vitamin A and related retinoids in immune function. Nutr Rev 56(1):S38–S48

    Article  PubMed  CAS  Google Scholar 

  • Szabova L, Macejova D et al (2003) Expression of nuclear retinoic acid receptor in peripheral blood mononuclear cells (PBMC) of healthy subjects. Life Sci 72(7):831–836

    Article  PubMed  CAS  Google Scholar 

  • Szondy Z, Reichert U et al (1997) Induction of apoptosis by retinoids and retinoic acid receptor γ-selective compounds in mouse thymocytes through a novel apoptosis pathway. Mol Pharmacol 51(6):972–982

    PubMed  CAS  Google Scholar 

  • Szondy Z, Reichert U et al (1998a) Inhibition of activation-induced apoptosis of thymocytes by all-trans-and 9-cis-retinoic acid is mediated via retinoic acid receptor alpha. Biochem J 331(Pt 3):767–774

    PubMed  CAS  Google Scholar 

  • Szondy Z, Reichert U et al (1998b) Retinoic acids regulate apoptosis of T lymphocytes through an interplay between RAR and RXR receptors. Cell Death Differ 5(1):4–10

    Article  PubMed  CAS  Google Scholar 

  • Verma AK, Shoemaker A et al (1992) Expression of retinoic acid nuclear receptors and tissue transglutaminase is altered in various tissues of rats fed a vitamin A-deficient diet. J Nutr 122(11):2144–2152

    PubMed  CAS  Google Scholar 

  • Warrell RP Jr, Frankel SR et al (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). New England J Med 324(20):1385–1393

    Article  Google Scholar 

  • Xiao S, Jin H et al (2008) Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-β-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 181(4):2277–2284

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We wish to thank the Tehran University of Medical Sciences (TUMS) and Health Services grants with number of 91-03-161-19476, and Iranian Center for Neurological Research.

Conflict of interest

The authors declare that there is no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Saboor-Yarghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bitarafan, S., Harirchian, M.H., Sahraian, M.A. et al. Impact of Vitamin A Supplementation on RAR Gene Expression in Multiple Sclerosis Patients. J Mol Neurosci 51, 478–484 (2013). https://doi.org/10.1007/s12031-013-0090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0090-9

Keywords

Navigation