Journal of Molecular Neuroscience

, Volume 51, Issue 3, pp 950–958 | Cite as

Expressions of Tumor Necrosis Factor Alpha and MicroRNA-155 in Immature Rat Model of Status Epilepticus and Children with Mesial Temporal Lobe Epilepsy

  • Muhammad Usman Ashhab
  • Ahmed Omran
  • Huimin Kong
  • Na Gan
  • Fang He
  • Jing Peng
  • Fei YinEmail author


Recently, the role of inflammation has attracted great attention in the pathogenesis of mesial temporal lobe epilepsy (MTLE), and microRNAs start to emerge as promising new players in MTLE pathogenesis. In this study, we investigated the dynamic expression patterns of tumor necrosis factor alpha (TNF-α) and microRNA-155 (miR-155) in the hippocampi of an immature rat model of status epilepticus (SE) and children with MTLE. The expressions of TNF-α and miR-155 were significantly upregulated in the seizure-related acute and chronic stages of MTLE in the immature rat model and also in children with MTLE. Modulation of TNF-α expression, either by stimulation using myeloid-related protein (MRP8) or lipopolysaccharide or inhibition using lenalidomide on astrocytes, leads to similar dynamic changes in miR-155 expression. Our study is the first to focus on the dynamic expression pattern of miR-155 in the immature rat of SE lithium-pilocarpine model and children with MTLE and to detect their relationship at the astrocyte level. TNF-α and miR-155, having similar expression patterns in the three stages of MTLE development, and their relationship at the astrocyte level may suggest a direct interactive relationship during MTLE development. Therefore, modulation of the TNF-α/miR-155 axis may be a novel therapeutic target for the treatment of MTLE.


TNF-α MiR-155 Neuro-inflammation Mesial temporal lobe epilepsy Astrocytes Developing brains 



This work was kindly supported by the National Natural Science Foundation of China (nos. 30872790, 30901631, 81171226, and 81100846) and the Scientific and Technological Department of Hunan Province (2011FJ3163). We are most grateful to Dr. Lixin Zhang (Department of Ophthalmology, Xiangya Hospital, China), Dr. Zeng Lei (Department of Spinal Surgery, Xiangya Hospital, China), and Yasmin Majeed, Central South University, for their kind help during the preparation of this work.

Conflict of Interest

None of the authors have any conflict of interest to disclose.


  1. Akassoglou K, Probert L, Kontogeorgos G, Kollias G (1997) Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J Immunol 158:438–458PubMedGoogle Scholar
  2. Amiri M, Bahrami F, Janahmadi M (2012) On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci Res 72:172–180PubMedCrossRefGoogle Scholar
  3. Aronica E, Fluiter K, Iyer A, Zurolo E, Vreijling J, van Vliet EA et al (2010) Expression pattern of miR-146a, an inflammation-associated microRNA in experimental and human temporal lobe epilepsy. Eur J Neurosci 31:1100–1107PubMedCrossRefGoogle Scholar
  4. Bala S, Marcos M, Kodys K, Csak T, Catalano D, Mandrekar P et al (2011) Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor alpha (TNF{alpha}) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem 286:1436–1444PubMedCrossRefGoogle Scholar
  5. Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL, De Simoni MG et al (2005) Tumor necrosis factor-alpha inhibits seizures in mice via p75 receptors. Ann Neurol 57:804–812PubMedCrossRefGoogle Scholar
  6. Balosso S, Ravizza T, Pierucci M, Calcagno E, Invernizzi R, Di Giovanni G et al (2009) Molecular and functional interactions between tumor necrosis factor-alpha receptors and the glutamatergic system in the mouse hippocampus: implications for seizure susceptibility. Neuroscience 161:293–300PubMedCrossRefGoogle Scholar
  7. Berg AT, Shinnar S, Levy SR, Testa FM (1999) Newly diagnosed epilepsy in children: presentation at diagnosis. Epilepsia 40:445–452PubMedCrossRefGoogle Scholar
  8. Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C et al (2011) Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyper-expression of interleukin-8. J Biol Chem 286:11604–11615PubMedCrossRefGoogle Scholar
  9. Blümcke I, Pauli E, Clusmann H, Schramm J, Becker A, Elger C et al (2007) A new clinicopathological classification system for mesial temporal sclerosis. Acta Neuropathol 113:235–244PubMedCrossRefGoogle Scholar
  10. Cascino GD (2009) Temporal lobe epilepsy is a progressive neurologic disorder time means neurons! Neurology 72:1718–1719PubMedCrossRefGoogle Scholar
  11. Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106:2735–2740PubMedCrossRefGoogle Scholar
  12. Damaye CA, Wu L, Peng J, He F, Zhang C, Lan Y et al (2011) An experimental study on dynamic morphological changes and expression pattern of GFAP and synapsin I in the hippocampus of MTLE models for immature rats. Int J Neurosci 121:575–588PubMedCrossRefGoogle Scholar
  13. de Lanerolle NC, Lee TS, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7:424–438PubMedCrossRefGoogle Scholar
  14. Dubé CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K et al (2010) Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 30:7484–7494PubMedCrossRefGoogle Scholar
  15. Galic MA, Riazi K, Heida JG, Mouihate A, Fournier NM, Spencer SJ et al (2008) Postnatal inflammation increases seizure susceptibility in adult rats. J Neurosci 28:6904–6913PubMedCrossRefGoogle Scholar
  16. Jung S, Yang H, Kim BS, Chu K, Lee SK, Jeon D (2012) The immunosuppressant cyclosporin A inhibits recurrent seizures in an experimental model of temporal lobe epilepsy. Neurosci Lett 529:133–138PubMedCrossRefGoogle Scholar
  17. Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R et al (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–3352PubMedCrossRefGoogle Scholar
  18. Kan AA, van Erp S, Derijck AA, de Wit M, Hessel EV, O’Duibhir E et al (2012) Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci 69:3127–3145PubMedCrossRefGoogle Scholar
  19. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385PubMedCrossRefGoogle Scholar
  20. Kucher BM, Neary JT (2005) Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes. J Neurochem 92:525–235PubMedCrossRefGoogle Scholar
  21. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101PubMedCrossRefGoogle Scholar
  22. Maroso M, Balosso S, Ravizza T, Liu J, Bianchi ME, Vezzani A (2011) Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med 270:319–326PubMedCrossRefGoogle Scholar
  23. O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA et al (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33:607–619PubMedCrossRefGoogle Scholar
  24. Omran A, Elimam D, Shalaby S, Peng J, Yin F (2012a) MicroRNAs: a light into the “black box” of neuropediatric diseases? Neuromolecular Med 14:244–261PubMedCrossRefGoogle Scholar
  25. Omran A, Peng J, Zhang C, Xiang QL, Xue J, Gan N et al (2012b) Interleukin-1ß and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 53:1215–1224PubMedCrossRefGoogle Scholar
  26. Omran A, Elimam D, Webster K, Shehadeh L, Yin F (2013) MicroRNAs: a new piece in the paediatric cardiovascular disease puzzle. Cardiol Young. doi: 10.1017/S1047951113000048 PubMedGoogle Scholar
  27. Pedersen IM, Otero D, Kao E, Miletic AV, Hother C, Ralfkiaer E et al (2009) Onco-miR-155 targets SHIP1 to promote TNF alpha-dependent growth of B cell lymphomas. EMBO Mol Med 1:288–295PubMedCrossRefGoogle Scholar
  28. Peng J, Omran A, Ashhab MU, Kong H, Gan N, He F et al (2013) Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci. doi: 10.1007/s12031-013-9953-3 Google Scholar
  29. Plata-Salamán CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE et al (2000) Kindling modulates the IL-1beta system, TNF alpha, TGF-beta1 and neuropeptide mRNAs in specific brain regions. Brain Res Mol Brain Res 75:248–258PubMedCrossRefGoogle Scholar
  30. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294PubMedCrossRefGoogle Scholar
  31. Ravizza T, Rizzi M, Perego C, Richichi C, Velísková J, Moshé SL et al (2005) Inflammatory response and glia activation in developing rat hippocampus after status epilepticus. Epilepsia 46:113–117PubMedCrossRefGoogle Scholar
  32. Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160PubMedCrossRefGoogle Scholar
  33. Ravizza T, Balosso S, Vezzani A (2011) Inflammation and prevention of epileptogenesis. Neurosci Lett 497:223–230PubMedCrossRefGoogle Scholar
  34. Risbud RM, Lee C, Porter BE (2011) Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus. Brain Res 1424:53–59PubMedCrossRefGoogle Scholar
  35. Shandra AA, Godlevsky LS, Vastyanov RS, Oleinik AA, Konovalenko VL, Rapoport EN et al (2002) The role of TNF-alpha in amygdala kindled rats. Neurosci Res 42:147–153PubMedCrossRefGoogle Scholar
  36. Sinha S, Patil SA, Jayalekshmy V, Satishchandra P (2008) Do cytokines have any role in epilepsy? Epilepsy Res 82:171–176PubMedCrossRefGoogle Scholar
  37. Tarassishin L, Loudig O, Bauman A, Shafit-Zagardo B, Suh HS, Lee SC (2011) Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia 59:1911–1922PubMedCrossRefGoogle Scholar
  38. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089PubMedGoogle Scholar
  39. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46:1724–1743PubMedCrossRefGoogle Scholar
  40. Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T et al (2002) Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 43:30–35PubMedCrossRefGoogle Scholar
  41. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049PubMedCrossRefGoogle Scholar
  42. Zimmer LA, Ennis M, Shipley MT (1997) Soman-induced seizures rapidly activate astrocytes and microglia in discrete brain regions. J Comp Neurol 378:482–492PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Muhammad Usman Ashhab
    • 1
  • Ahmed Omran
    • 1
    • 2
  • Huimin Kong
    • 1
  • Na Gan
    • 1
  • Fang He
    • 1
  • Jing Peng
    • 1
  • Fei Yin
    • 1
    Email author
  1. 1.Department of PediatricsXiangya Hospital of Central South UniversityChangshaChina
  2. 2.Department of Pediatrics and NeonatologySuez Canal UniversityIsmailiaEgypt

Personalised recommendations