Skip to main content

Advertisement

Log in

Muscle-Directed Anti-Aβ Single-Chain Antibody Delivery via AAV1 Reduces Cerebral Aβ Load in an Alzheimer’s Disease Mouse Model

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We previously reported that anti-amyloid-beta (Aβ) single-chain antibody (scFv59) brain delivery via recombinant adeno-associated virus (rAAV) was effective in reducing cerebral Aβ load in an Alzheimer’s disease (AD) mouse model without inducing inflammation. Here, we investigated the prophylactic effects and mechanism of a muscle-directed gene therapy modality in an AD mouse model. We injected rAAV serotype 1 encoding scFv59 into the right thigh muscles of 3-month-old mice. Nine months later, high levels of scFv59 expression were confirmed in the thigh muscles by both immunoblotting and immunohistochemistry. As controls, model mice were similarly injected with rAAV1 encoding antihuman immunodeficiency virus Gag antibody (scFvGag). AAV1-mediated scFv59 gene delivery was effective in decreasing Aβ deposits in the brain. Compared with the scFvGag group, levels of Aβ in cerebrospinal fluid (CSF) decreased significantly while Aβ in serum tended to increase in the scFv59 group. AAV1-mediated scFv59 gene delivery may alter the equilibrium of Aβ between the blood and brain, resulting in an increased efflux of Aβ from the brain owing to antibody-mediated sequestration/clearance of peripheral Aβ. Our results suggest that muscle-directed scFv59 delivery via rAAV1 may be a prophylactic option for AD and that levels of CSF Aβ may be used to evaluate the efficacy of anti-Aβ immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bard F, Cannon C, Barbour R et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919

    Article  PubMed  CAS  Google Scholar 

  • Bird RE, Hardman KD, Jacobson JW et al (1988) Single-chain antigen-binding proteins. Science 242(4877):423–426

    Article  PubMed  CAS  Google Scholar 

  • Check E (2002) Nerve inflammation halts trial for Alzheimer’s drug. Nature 415(6871):462

    Article  PubMed  CAS  Google Scholar 

  • Cohn EF, Zhuo J, Kelly ME, Chao HJ (2007) Efficient induction of immune tolerance to coagulation factor IX following direct intramuscular gene transfer. J Thromb Haemost 5(6):1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL (2011) Biomarkers in Alzheimer’s disease drug development. Alzheimers Dement 7(3):e13–e44

    Article  PubMed  CAS  Google Scholar 

  • Das P, Howard V, Loosbrock N, Dickson D, Murphy MP, Golde TE (2003) Amyloid-beta immunization effectively reduces amyloid deposition in FcRgamma−/− knock-out mice. J Neurosci 23(24):8532–8538

    PubMed  CAS  Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98(15):8850–8855

    Article  PubMed  CAS  Google Scholar 

  • DeMattos RB, Bales KR, Parsadanian M et al (2002) Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease. J Neurochem 81(2):229–236

    Article  PubMed  CAS  Google Scholar 

  • Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64(3):343–349

    Article  PubMed  Google Scholar 

  • Flood DG, Marek GJ, Williams M (2011) Developing predictive CSF biomarkers—a challenge critical to success in Alzheimer’s disease and neuropsychiatric translational medicine. Biochem Pharmacol 81(12):1422–1434

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi KI, Accavitti-Loper M, Kim HD et al (2006a) Amelioration of amyloid load by anti-A[beta] single-chain antibody in Alzheimer mouse model. Biochem Biophys Res Commun 344:79–86

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi KI, Tahara K, Kim HD et al (2006b) Anti-Aβ single chain antibody delivery via adeno-associated virus for treatment of Alzheimer’s disease. Neurobiol Dis 23:502–511

    Article  PubMed  CAS  Google Scholar 

  • Glockshuber R, Malia M, Pfitzinger I, Pluckthun A (1990) A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29(6):1362–1367

    Article  PubMed  CAS  Google Scholar 

  • Grill JD, Cummings JL (2010) Current therapeutic targets for the treatment of Alzheimer’s disease. Expert Rev Neurother 10(5):711–728

    Article  PubMed  CAS  Google Scholar 

  • Grimm D, Kay MA, Kleinschmidt JA (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 7(6):839–850

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75(3):388–397

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Wilcock G, Andrieu S et al (2011) Biomarkers for Alzheimer’s disease therapeutic trials. Prog Neurobiol 95(4):579–593

    Article  PubMed  CAS  Google Scholar 

  • Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5(3):228–234

    Article  PubMed  CAS  Google Scholar 

  • Hardy J (2006) A hundred years of Alzheimer’s disease research. Neuron 52(1):3–13

    Article  PubMed  CAS  Google Scholar 

  • Huston JS, Mudgett-Hunter M, Tai MS et al (1991) Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol 203:46–88

    Article  PubMed  CAS  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128

    Article  PubMed  CAS  Google Scholar 

  • Jankowsky JL, Fadale DJ, Anderson J et al (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13(2):159–170

    Article  PubMed  CAS  Google Scholar 

  • Janus C, Pearson J, McLaurin J et al (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408(6815):979–982

    Article  PubMed  CAS  Google Scholar 

  • Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698–712

    Article  PubMed  CAS  Google Scholar 

  • Kasturirangan S, Sierks M (2010) Targeted hydrolysis of beta-amyloid with engineered antibody fragment. Curr Alzheimer Res 7(3):214–222

    Article  PubMed  CAS  Google Scholar 

  • Kelly ME, Zhuo J, Bharadwaj AS, Chao H (2009) Induction of immune tolerance to FIX following muscular AAV gene transfer is AAV-dose/FIX-level dependent. Mol Ther 17(5):857–863

    Article  PubMed  CAS  Google Scholar 

  • Kou J, Kim HD, Pattanyak A et al (2011) Anti-Abeta single-chain antibody brain delivery via AAV reduces amyloid load but may increase cerebral hemorrhages in an Alzheimer mouse model. J Alzheimers Dis 27(1):23–28

    PubMed  CAS  Google Scholar 

  • Lai AY, McLaurin J (2012) Clearance of amyloid-beta peptides by microglia and macrophages: the issue of what, when and where. Futur Neurol 7(2):165–176

    Article  CAS  Google Scholar 

  • Levites Y, Das P, Price RW et al (2006) Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest 116(1):193–201

    Article  PubMed  CAS  Google Scholar 

  • McCown TJ (2005) Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther 5(3):333–338

    Article  PubMed  CAS  Google Scholar 

  • Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12(5):341–355

    Article  PubMed  CAS  Google Scholar 

  • Morgan D (2011) Immunotherapy for Alzheimer’s disease. J Intern Med 269(1):54–63

    Article  PubMed  CAS  Google Scholar 

  • Morgan D, Diamond DM, Gottschall PE et al (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408(6815):982–985

    Article  PubMed  CAS  Google Scholar 

  • Nicoll JA, Barton E, Boche D et al (2006) Abeta species removal after abeta42 immunization. J Neuropathol Exp Neurol 65(11):1040–1048

    Article  PubMed  CAS  Google Scholar 

  • Orgogozo JM, Gilman S, Dartigues JF et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61(1):46–54

    Article  PubMed  CAS  Google Scholar 

  • Panza F, Frisardi V, Imbimbo BP et al (2010) Bapineuzumab: anti-beta-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. Immunotherapy 2(6):767–782

    Article  PubMed  CAS  Google Scholar 

  • Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461(7266):916–922

    Article  PubMed  CAS  Google Scholar 

  • Ryan DA, Mastrangelo MA, Narrow WC, Sullivan MA, Federoff HJ, Bowers WJ (2010) Abeta-directed single-chain antibody delivery via a serotype-1 AAV vector improves learning behavior and pathology in Alzheimer’s disease mice. Mol Ther 18(8):1471–1481

    Article  PubMed  CAS  Google Scholar 

  • Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400(6740):173–177

    Article  PubMed  CAS  Google Scholar 

  • Shoji M (2011) Biomarkers of the dementia. Int J Alzheimers Dis 2011:564321

    PubMed  Google Scholar 

  • Siemers ER, Friedrich S, Dean RA et al (2010) Safety and changes in plasma and cerebrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease. Clin Neuropharmacol 33(2):67–73

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson EM, Wisniewski T, Frangione B (2002) A safer vaccine for Alzheimer’s disease? Neurobiol Aging 23(6):1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Solomon B, Koppel R, Frankel D, Hanan-Aharon E (1997) Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci USA 94(8):4109–4112

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283(44):29615–29619

    Article  PubMed  CAS  Google Scholar 

  • Verma R, Boleti E, George AJ (1998) Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J Immunol Methods 216(1–2):165–181

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Dobrzynski E, Schlachterman A, Cao O, Herzog RW (2005) Systemic protein delivery by muscle-gene transfer is limited by a local immune response. Blood 105(11):4226–4234

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Gao CY, Yang M et al (2010) Intramuscular delivery of a single chain antibody gene prevents brain Abeta deposition and cognitive impairment in a mouse model of Alzheimer’s disease. Brain Behav Immun 24(8):1281–1293

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Pollard A, Zhong JH et al (2009) Intramuscular delivery of a single chain antibody gene reduces brain Abeta burden in a mouse model of Alzheimer’s disease. Neurobiol Aging 30(3):364–376

    Article  PubMed  Google Scholar 

  • Zlokovic BV (2004) Clearing amyloid through the blood–brain barrier. J Neurochem 89(4):807–811

    Article  PubMed  CAS  Google Scholar 

  • Zolotukhin S, Potter M, Zolotukhin I et al (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28(2):158–167

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Institutes of Health (AG029818, EY018478, AG037814, and AG030399). We thank Dr. James M. Wilson at the University of Pennsylvania for p5E18-VD2/8 and Linda Walter for the assistance in the preparation of this manuscript. The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichiro Fukuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Pattanayak, A., Song, M. et al. Muscle-Directed Anti-Aβ Single-Chain Antibody Delivery via AAV1 Reduces Cerebral Aβ Load in an Alzheimer’s Disease Mouse Model. J Mol Neurosci 49, 277–288 (2013). https://doi.org/10.1007/s12031-012-9877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9877-3

Keywords

Navigation