Skip to main content

Advertisement

Log in

Involvement of TREK-1 Activity in Astrocyte Function and Neuroprotection Under Simulated Ischemia Conditions

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Astrocytes play a fundamental role in the pathogenesis of ischemic neuronal death. The optimal operation of electrogenic astrocytic transporters and exchangers for some well-defined astrocyte brain homeostatic functions depends on the presence of K+ channels in the cell membranes and the hyperpolarized membrane potential. Our previous study showed that astrocytes functionally express two-pore domain K+ channel TREK-1, which helps to set the negative resting membrane potential. However, the roles of TREK-1 on astrocytic function under normal and ischemic conditions remain unclear. In this study, we investigated the expression of TREK-1 protein on cultured astrocytes and the effect of TREK-1 activity on astrocytic glutamate clearance capacity and release of s100β after simulated ischemic insult. TREK-1 immunoreactivity was up-regulated after hypoxia. Suppression of TREK-1 activity inhibited the glutamate clearance capability, enhanced the inflammatory secretion of astrocytes derived s100β and led to increased neuronal apoptosis after ischemic insult. Our results suggest that TREK-1 activity is involved in astrocytic function and neuronal survival. This would provide evidence showing astrocytic TREK-1 involvement in ischemia pathology which may serve as a potential therapeutic target in stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asano T, Mori T, Shimoda T, Shinagawa R, Satoh S, Yada N, Katsumata S, Matsuda S, Kagamiishi Y, Tateishi N (2005) Arundic acid (ONO-2506) ameliorates delayed ischemic brain damage by preventing astrocytic overproduction of S100B. Curr Drug Targets CNS Neurol Disord 4:127–142

    Article  PubMed  CAS  Google Scholar 

  • Blondeau N, Lauritzen I, Widmann C, Lazdunski M, Heurteaux C (2002) A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 22:821–834

    Article  PubMed  CAS  Google Scholar 

  • Buckler KJ, Honore E (2005) The lipid-activated two-pore domain K+ channel TREK-1 is resistant to hypoxia: implication for ischaemic neuroprotection. J Physiol 562:213–222

    Article  PubMed  CAS  Google Scholar 

  • Chu KC, Chiu CD, Hsu TT, Hsieh YM, Huang YY, Lien CC (2010) Functional identification of an outwardly rectifying pH- and anesthetic-sensitive leak K(+) conductance in hippocampal astrocytes. Eur J Neurosci 32:725–735

    Article  PubMed  Google Scholar 

  • Djukic B, Casper KB, Philpot BD, Chin LS, McCarthy KD (2007) Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci 27:11354–11365

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Honoré E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25:601–608

    Article  PubMed  CAS  Google Scholar 

  • Gerlach R, Demel G, König HG, Gross U, Prehn JH, Raabe A, Seifert V, Kögel D (2006) Active secretion of S100B from astrocytes during metabolic stress. Neuroscience 1411:697–1701

    Google Scholar 

  • Haring JH, Hagan A, Olson J, Rodgers B (1993) Hippocampal serotonin levels influence the expression of S100 beta detected by immunocytochemistry. Brain Res 631(1):119–123

    Article  PubMed  CAS  Google Scholar 

  • Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695

    Article  PubMed  CAS  Google Scholar 

  • Honore E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261

    Article  PubMed  CAS  Google Scholar 

  • Kim D (2005) Physiology and pharmacology of two-pore domain potassium channels. Curr Pharm Des 11:2717–2736

    Article  PubMed  CAS  Google Scholar 

  • Kliot M, Smith GM, Siegal JD, Silver J (1990) Astrocyte-polymer implants promote regeneration of dorsal root fibers into the adult mammalian spinal cord. Exp Neurol 109:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kucheryavykh LY, Kucheryavykh YV, Inyushin M, Shuba YM, Sanabria P, Cubano LA, Skatchkov SN, Eaton MJ (2009) Ischemia increases TREK-2 channel expression in astrocytes: relevance to glutamate clearance. Open Neurosci J 3:40–47

    Article  PubMed  CAS  Google Scholar 

  • Li ZB, Zhang HX, Li LL, Wang XL (2005) Enhanced expressions of arachidonic acid-sensitive tandem-pore domain potassium channels in rat experimental acute cerebral ischemia. Biochem Biophys Res Commun 327(4):1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Mori T, Tateishi N, Kagamiishi Y, Satoh S, Katsube N, Morikawa E, Morimoto T, Ikuta F, Asano T (2002) Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats: Part I. Enhanced astrocytic synthesis of s-100beta in the periinfarct area precedes delayed infarct expansion. J Cereb Blood Flow Metab 22:711–722

    Article  PubMed  CAS  Google Scholar 

  • Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, Pangalos MN (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Mol Brain Res 86:101–114

    Article  PubMed  CAS  Google Scholar 

  • Meier SD, Kafitz KW, Rose CR (2008) Developmental profile and mechanisms of GABA-induced calcium signaling in hippocampal astrocytes. Glia 56(10):1127–1137

    Article  PubMed  Google Scholar 

  • Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 107:589–601

    Article  PubMed  CAS  Google Scholar 

  • Pasler D, Gabriel S, Heinemann U (2007) Two-pore-domain potassium channels contribute to neuronal potassium release and glial potassium buffering in the rat hippocampus. Brain Res 1173:14–26

    Article  PubMed  Google Scholar 

  • Punke MA, Licher T, Pongs O, Friederich P (2003) Inhibition of human TREK-1 channels by bupivacaine. Anesth Analg 96:1665–1673

    Article  PubMed  CAS  Google Scholar 

  • Seifert G, Huttmann K, Binder DK, Hartmann C, Wyczynski A, Neusch C, Steinhauser C (2009) Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci 29:7474–7488

    Article  PubMed  CAS  Google Scholar 

  • Sochocka E, Juurlink BH, Code WE, Hertz V, Peng L, Hertz L (1994) Cell death in primary cultures of mouse neurons and astrocytes during exposure to and 'recovery' from hypoxia, substrate deprivation and simulated ischemia. Brain Res 638:21–28

    Article  PubMed  CAS  Google Scholar 

  • Takano T, Oberheim N, Cotrina ML, Nedergaard M (2009) Astrocytes and ischemic injury. Stroke 40:S8–S12

    Article  PubMed  Google Scholar 

  • Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505

    PubMed  CAS  Google Scholar 

  • Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    PubMed  CAS  Google Scholar 

  • Wang M, Song J, Xiao W, Yang L, Yuan J, Wang W, Yu Z, Xie M (2012) Changes in lipid-sensitive two-pore domain potassium channel TREK-1 expression and its involvement in astrogliosis following cerebral ischemia in rats. J Mol Neurosci 46:384–392

    Article  PubMed  CAS  Google Scholar 

  • Wise-Faberowski L, Aono M, Pearlstein RD, Warner DS (2004) Apoptosis is not enhanced in primary mixed neuronal/glial cultures protected by isoflurane against N-methyl-d-aspartate excitotoxicity. Anesth Analg 99:1708–1714

    Article  PubMed  CAS  Google Scholar 

  • Yu AC, Gregory GA, Chan PH (1989) Hypoxia-induced dysfunctions and injury of astrocytes in primary cell cultures. J Cereb Blood Flow Metab 9:20–28

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Rempe DA (2010) Targeting astrocytes for stroke therapy. Neurotherapeutics 7:439–451

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Xu G, Xie M, Zhang X, Schools GP, Ma L, Kimelberg HK, Chen H (2009) TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci 29:8551–8564

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Zhang Q, Yu Z, Zhang L, Tian D, Zhu S, Bu B, Xie M, Wang W (2007) Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo. Glia 55:546–558

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The investigation was supported by the National Natural Science Foundation of China (30971007, 81030021), Natural Science Foundation for outstanding young scholar of Hubei Province (2010CDA103) and National Basic Research Development Program (973 Program) of China (2011CB504403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjie Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Liu, Y., Chen, X. et al. Involvement of TREK-1 Activity in Astrocyte Function and Neuroprotection Under Simulated Ischemia Conditions. J Mol Neurosci 49, 499–506 (2013). https://doi.org/10.1007/s12031-012-9875-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9875-5

Keywords

Navigation