Skip to main content

Advertisement

Log in

Expression Profile of Flotillin-2 and Its Pathophysiological Role After Spinal Cord Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Some receptors that block axonal regeneration or promote cell death after spinal cord injury (SCI) are localized in membrane rafts. Flotillin-2 (Flot-2) is an essential protein associated with the formation of these domains and the clustering of membranal proteins, which may have signaling activities. Our hypothesis is that trauma will change Flot-2 expression and interference of this lipid raft marker will promote functional locomotor recovery after SCI. Analyses were conducted to determine the spatiotemporal profile of Flot-2 expression in adult rats after SCI, using the MASCIS impactor device. Immunoblots showed that SCI produced a significant decrease in the level of Flot-2 at 2 days post-injury (DPI) that increased until 28 DPI. Confocal microscopy revealed Flot-2 expression in neurons, reactive astrocytes and oligodendrocytes specifically associated to myelin structures near or close to the axons of the cord. In the open field test and grid walking assays, to monitor locomotor recovery of injured rats infused intrathecally with Flot-2 antisense oligonucleotides for 28 days showed significant behavioral improvement at 14, 21 and 28 DPI. These findings suggest that Flot-2 has a role in the nonpermissive environment that blocks locomotor recovery after SCI by clustering unfavorable proteins in membrane rafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn M, Kim H, Kim JT et al (2006) Gamma-ray irradiation stimulates the expression of caveolin-1 and GFAP in rat spinal cord: a study of immunoblot and immunohistochemistry. J Vet Sci 7:309–314

    Article  PubMed  Google Scholar 

  • Asano A, Selvaraj V, Buttke DE et al (2009) Biochemical characterization of membrane fractions in murine sperm: identification of three distinct sub-types of membrane rafts. J Cell Physiol 218:537–548

    Article  PubMed  CAS  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  PubMed  CAS  Google Scholar 

  • Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M, Parada LF (2005) Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci U S A 26:10694–10699

    Article  Google Scholar 

  • Bickel PE, Scherer PE, Scnitzer JE, Oh P, Lisanti MP, Lodish HF (1997) Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. J Biol Chem 272:13793–13802

    Article  PubMed  CAS  Google Scholar 

  • Boynapalli M, Kottis V, Lahoud O, Bamri-Ezzine S, Braun PE, Mikol DD (2005) Oligodendrocyte-myelin glycoprotein is present in lipid rafts and caveolin-1-enriched membranes. Glia 52:219–227

    Article  Google Scholar 

  • Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127

    Article  PubMed  CAS  Google Scholar 

  • Calvo AC, Moreno-Igoa M, Manzano R et al (2008) Determination of protein and RNA expression levels of common housekeeping genes in a mouse model of neurodegeneration. Proteomics 8:4338–4343

    Article  PubMed  CAS  Google Scholar 

  • Cho YJ, Chema D, Moskow JJ et al (1995) Epidermal surface antigen (MS17S1) is highly conserved between mouse and human. Genomics 27:251–258

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Orengo L, Figueroa JD, Velazquez I et al (2006) Blocking EphA4 uregulation after spinal cord injury results in enhanced chronic pain. Exp Neurol 202:421–433

    Article  PubMed  CAS  Google Scholar 

  • Davis AR, Lotocki G, Marciallo AE, Dietrich WD, Keane RW (2007) FasL, Fas and death-inducing signaling complex (DISC) proteins are recruited to membrane rafts after spinal cord injury. J Neurotrauma 5:823–834

    Article  Google Scholar 

  • DeBruin LS, Haines JD, Bienzle D, Harauz G (2006) Partitioning of myelin basic protein into membrane microdomains in a spontaneously demyelinating mouse model for multiple sclerosis. Biochem Cell Biol 84:993–1005

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JW (2006) Overcoming inhibition in the damaged spinal cord. J Neurotrauma 23:371–383

    Article  PubMed  Google Scholar 

  • Figueroa JD, Benton RL, Velazquez I et al (2006) Inhibition of EphA7 up-regulation after spinal cord injury reduces apoptosis and promotes locomotor recovery. J Neurosci Res 84:1438–1451

    Article  PubMed  CAS  Google Scholar 

  • Fundytus ME, Yashpal K, Chabot JG et al (2001) Knockdown of spinal metabotropic glutamate receptor 1 (mGluR(1)) alleviates pain and restores opioid efficacy after nerve injury in rats. Br J Pharmacol 132:354–367

    Article  PubMed  CAS  Google Scholar 

  • Gajate C, Mollinedo F (2001) The antitumor ether lipid ET-18-OCH3 induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98:3860–3863

    Article  PubMed  CAS  Google Scholar 

  • Gajate C, Mollinedo F (2005) Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J Biol Chem 280:11641–11647

    Article  PubMed  CAS  Google Scholar 

  • Galbiati F, Volonte D, Gil O et al (1998) Expression of caveolin-1 and -2 in differentiating PC12 cells and dorsal root ganglion neurons: caveolin-2 is up-regulated in response to cell injury. Proc Natl Acad Sci U S A 95:10257–10262

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Alias G, Torres-Espin A, Vallejo C, Navarro X (2010) Functional involvement of the lumbar spinal cord after contusion to T8 spinal segment of the rat. Restor Neurol Neurosci 28:781–792

    PubMed  Google Scholar 

  • Gebreselassie D, Bowen WD (2004) Sigma-2 receptors are specifically localized to lipid rafts in rat liver membranes. Eur J Pharmacol 493:19–28

    Article  PubMed  CAS  Google Scholar 

  • Hueber AO (2003) Role of membrane microdomain rafts in NFR-mediated signal transduction. Cell Death Differ 10:7–9

    Article  PubMed  CAS  Google Scholar 

  • Hulsebosh CE (2005) From discovery to clinical trial: treatment trategies for central neuropathic pain after spinal cord injury. Curr Pharm Des 11:1411–1420

    Article  Google Scholar 

  • Jacobowitz DM, Kallarakal AT (2004) Flotillin-1 in the substantia nigra of the Parkinson brain and a predominant localization in catecholaminergic nerves in the rat brain. Neurotox 6:245–257

    Article  CAS  Google Scholar 

  • Keane RW, Davis AR, Dietrich WD (2006) Inflammatory and apoptotic signaling after spinal cord injury. J Neurotrauma 23:335–344

    Article  PubMed  Google Scholar 

  • Kim H, Ahn M, Moon C, Matsumoto Y, Koh CS, Shin T (2006) Immunohistochemical study of flotillin-1 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res 1114:335–344

    Article  Google Scholar 

  • Klein R (2004) Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol 16:580–589

    Article  PubMed  CAS  Google Scholar 

  • Kokubo H, Lemere CA, Yamaguchi H (2000) Localization of flotillins in human brain and their accumulation with pregression of Alzheimer’s disease pathology. Neurosci Lett 290:93–96

    Article  PubMed  CAS  Google Scholar 

  • Lai KO, Ip FC, Cheung J, Fu AK, Ip NY (2001) Expression of Eph receptors in skeletal muscle and their localization at the neuromuscular junction. Mol Cell Neurosci 17:1034–1047

    Article  PubMed  CAS  Google Scholar 

  • Lang DM, Lommel S, Jung M et al (1998) Identification of Reggie-1 and Reggie-2 as plasmamembrane-associated proteins which cocluster with activated with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J Neurobiol 37:502–523

    Article  PubMed  CAS  Google Scholar 

  • Langhorst MF, Reuter A, Stuermer CA (2005) Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62:2228–2240

    Article  PubMed  CAS  Google Scholar 

  • Liu BP, Cafferty WB, Budel SO, Strittmatter SM (2006) Extracellular regulators of axonal growth in the adult central nervous system. Philos Trans R Soc Lond B Biol Sci 361:1593–1610

    Article  PubMed  CAS  Google Scholar 

  • Lucero HA, Robbins PW (2004) Lipid rafts-protein association and the regulation of protein activity. Arch Biochem Biophys 426:208–224

    Google Scholar 

  • Mairhofer M, Steiner M, Mosgoeller W, Prohaska R, Salzer U (2002) Stomatin is a major lipid-raft component of platelet alpha granules. Blood 100:897–904

    Article  PubMed  CAS  Google Scholar 

  • Merkler D, Metz GAS, Raineteau O, Dietz V, Schwab ME, Fouad K (2001) Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J Neurosci 21:3665–3673

    PubMed  CAS  Google Scholar 

  • Miranda JD, White LA, Marcillo AE, Willson CA, Jagid J, Whittemore SR (1999) Induction of Eph B3 after spinal cord injury. Exp Neurol 156:218–222

    Article  PubMed  CAS  Google Scholar 

  • Mollinedo F, Gajate C (2010) Lipid rafts and clusters of apoptotic signaling molecule-enriched rafts in cancer therapy. Future Oncol 6:811–821

    Article  PubMed  CAS  Google Scholar 

  • Munderloh M, Solis GP, Bodrikov V et al (2009) Reggies/flotillins regulate retinal axon regeneration in the zebrafish optic nerve and differentiation of hippocampal and N2a neurons. J Neurosci 20:6607–6615

    Article  Google Scholar 

  • Pasquale EB (2005) Eph receptor signalling casts a wide net on cell behavior. Nat Rev Mol Cell Biol 6:462–475

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292

    Article  PubMed  CAS  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598

    Article  PubMed  CAS  Google Scholar 

  • Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118:1099–1102

    Article  PubMed  CAS  Google Scholar 

  • Rouvinski A, Gahali-Sass I, Stav I, Metzer E, Atlan H, Taraboulos A (2003) Both raft- and non-raft proteins associate with CHAPS-insoluble complexes: some APP in large complexes. Biochem Biophysical Res Commun 308:750–758

    Article  CAS  Google Scholar 

  • Salgado IK, Serran M, Garcia JO, Martinez NA, Maldonado HM, Baez-Pagan CA, Lasalde-Dominicci JA, Silva WI (2012) SorLA in glia: shared subcellular distribution patterns with caveolin-1. Cell Mol Neurobiol 32:409–421

    Article  PubMed  CAS  Google Scholar 

  • Santamaria A, Castellanos E, Gomez V et al (2005) PTOV1 enables the nuclear translocation and mitegenic activity of Flotillin-1, a major protein of lipid rafts. Mol Cell Biol 25:1900–1911

    Article  PubMed  CAS  Google Scholar 

  • Santiago JM, Rosas OR, Torrado AI, González MM, Kalyan-Masih PO, Miranda JD (2009) Molecular, anatomical, physiological and behavioral studies of rats treated with buprenorphine. J Neurotrauma 26:1783–1793

    Article  PubMed  Google Scholar 

  • Schroeder WT, Stewart-Galetka S, Mandavilli S, Parryl DAD, Goldsmith L, Duvic M (1994) Cloning and characterization of a novel epidermal cell surface antigen (ESA). J Biol Chem 269:19983–19991

    PubMed  CAS  Google Scholar 

  • Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA (1998) Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem 273:1150–1157

    Article  PubMed  CAS  Google Scholar 

  • Schulte T, Paschke KA, Laessing U, Lottspeich F, Stuermer CA (1997) Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development 124:577–587

    PubMed  CAS  Google Scholar 

  • Shah MB, Sehgal PB (2007) Nondetergent isolation of rafts. Methods Mol Biol 398:21–28

    Article  PubMed  CAS  Google Scholar 

  • Shin T (2007) Increases in the phosphorylated form of caveolin-1 in the spinal cord of rats with clip compression injury. Brain Res 1141:228–234

    Article  PubMed  CAS  Google Scholar 

  • Silva WI, Maldonado HM, Lisanti MP et al (1999) Identification of caveolae and caveolin in C6 glioma cells. Int J Dev Neurosci 17:705–714

    Article  PubMed  CAS  Google Scholar 

  • Silva WI, Maldonado HM, Velázquez G et al (2005) Caveolin isoform expression during differentiation of C6 glioma cells. Int J Dev Neurosci 7:599–612

    Article  Google Scholar 

  • Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP (1996) Co-purification and direct interaction of Ras with Caveolin, an integral membrane protein of caveolae microdomains. J Biol Chem 271:9690–9697

    Article  PubMed  CAS  Google Scholar 

  • Sugiyo S, Yonehara N, Appenteng K, Nokubi T, Shigenaga Y, Takemura M (2001) Effects of intrathecal c-fos antisense oligodeoxynucleotide on adjuvant-induced thermal hyperalgesia. Exp Brain Res 140:198–205

    Article  PubMed  CAS  Google Scholar 

  • Vihanto MM, Vindis C, Djonov V, Cerreti DP, Huynh-Do U (2006) Caveolin-1 is required for signaling and membrane targeting of EphB1 receptor tyrosine kinase. J Cell Sci 119:2299–2309

    Article  PubMed  CAS  Google Scholar 

  • White DM (2000) Neurotrophin-3 antisense oligonucleotide attenuates nerve injury-induced Abeta-fibre sprouting. Brain Res 885:79–86

    Article  PubMed  CAS  Google Scholar 

  • Yaksh TL, Michener SR, Bailey JE et al (1988) Survey of distribution of substance P, vasoactive intestinal polypeptide, cholecystokinin, neurotensin, Met-enkephalin, bombesin and PHI in the spinal cord of cat, dog, sloth and monkey. Peptides 9:357–372

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Guo W, Feng L (2004) Segregation of Nogo 66 receptors into lipid rafts in rat brain and inhibition of Nogo 66 signaling by cholesterol depletion. FEBS Lett 577:87–92

    Article  PubMed  CAS  Google Scholar 

  • Yui G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    Google Scholar 

  • Zhang H, Uchimura K, Kadomatsu K (2006) Brain keratan sulfate and glial scar formation. Ann N Y Acad Sci 1086:81–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to the Experimental Surgery Facilities, the Animal Resource Center, the MBRS/SCORE Molecular Facilities and the RCMI Image Center at the UPR Medical Sciences Campus for the use of their facilities. This research project is in partial fulfillment of Mr. José M. Santiago’s doctoral dissertation. This work was supported by grants MBRS-RISE Program (R25-GM068138), MBRS/SCORE (S06-GM008224), NIH/NINDS (39405), M-RISP (532851), RCMI (G12RR03051) and the Associate Deanship of Biomedical Sciences and Graduate Studies of the UPR School of Medicine. Editorial support was provided by Dr. Mary Helen Mays, Puerto Rico Clinical and Translational Research Consortium, funded by the National Center for Research Resources (NCRR) (1U54RR026139-01A1), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge D. Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiago, J.M., Torrado, A.I., Arocho, L.C. et al. Expression Profile of Flotillin-2 and Its Pathophysiological Role After Spinal Cord Injury. J Mol Neurosci 49, 347–359 (2013). https://doi.org/10.1007/s12031-012-9873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9873-7

Keywords

Navigation