Skip to main content

Advertisement

Log in

Mice Deficient in Cystathionine Beta Synthase Display Increased Dyrk1A and SAHH Activities in Brain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia is associated with brain disease. However, biological actions linking hyperhomocysteinemia to neuronal abnormalities are not well understood. We recently found a relationship between Dyrk1A protein expression, a serine/threonine kinase that might be responsible for cognitive functions in Down’s syndrome, and hepatic S-adenosylhomocysteine hydrolase (SAHH) activity, which plays a key role in S-adenosylmethionine-dependent methylation reactions. Considering the role of methylation and Dyrk1A in cognitive functions, the aim of this study was to investigate the relationship between Dyrk1A and SAHH activity in brain of hyperhomocysteinemic mice. We found an increase in Dyrk1A protein expression and activity in brain of hyperhomocysteinemic mice, concomitant with an increased SAHH activity. The effect of overexpression of protein Dyrk1A on SAHH activity was confirmed in brain of Dyrk1A transgenic mice, and additionally we found a positive correlation between Dyrk1A and SAHH activity. These observations suggest a potential effect of Dyrk1A on brain phenotypes linked to hyperhomocysteinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CBS:

Cystathionine beta synthase

DYRK:

Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase

Q-PCR:

Real-time quantitative reverse transcription-polymerase chain reaction

SAH:

S-Adenosylhomocysteine

SAHH:

SAH hydrolase

VEGF:

Vascular endothelial growth factor

References

  • Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ et al (2009) Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 459:1126–1130

    Article  PubMed  CAS  Google Scholar 

  • Becker W, Sippl W (2011) Activation, regulation, and inhibition of DYRK1A. FEBS J 278:246–256

    Article  PubMed  CAS  Google Scholar 

  • Chang HS, Lin CH, Yang CH, Yen MS, Lai CR, Chen YR et al (2007) Increased expression of Dyrk1a in HPV16 immortalized keratinocytes enable evasion of apoptosis. Int J Cancer 120:2377–2385

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Barrachina M, Puig B, Martínez de Lagrán M, Martí E, Avila J, Dierssen M (2005) Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol Dis 20:392–400

    Article  PubMed  CAS  Google Scholar 

  • Fotaki V, Dierssen M, Alcántara S, Martínez S, Martí E, Casas C et al (2002) Dyrk1A haploinsufficiency affects viability and causes developmental delay and abnormal brain morphology in mice. Mol Cell Biol 22:6636–6647

    Article  PubMed  CAS  Google Scholar 

  • Guedj F, Pereira PL, Najas S, Barallobre MJ, Chabert C, Souchet B et al (2012) DYRK1A: a master regulatory protein controlling brain growth. Neurobiol Dis 46:190–203

    Article  PubMed  CAS  Google Scholar 

  • Hamelet J, Noll C, Ripoll C, Paul JL, Janel N, Delabar JM (2009) Effect of hyperhomocysteinemia on the protein DYRK1A in liver of mice. Biochem Biophys Res Commun 378:673–677

    Article  PubMed  CAS  Google Scholar 

  • Han JM, Lee YJ, Lee SY, Kim EM, Moon Y, Kim HW, Hwang O (2007) Protective effect of sulforaphane against dopaminergic cell death. J Pharmacol Exp Ther 321:249–256

    Article  PubMed  CAS  Google Scholar 

  • Hershfield MS, Aiyar VN, Premakumar R, Small WC (1985) S-Adenosylhomocysteine hydrolase from human placenta. Affinity purification and characterization. Biochem J 230:43–52

    PubMed  CAS  Google Scholar 

  • Kamath AF, Chauhan AK, Kisucka J, Dole VS, Loscalzo J, Handy DE et al (2006) Elevated levels of homocysteine compromise blood–brain barrier integrity in mice. Blood 107:591–593

    Article  PubMed  CAS  Google Scholar 

  • Leal JF, Ferrer I, Blanco-Aparicio C, Hernández-Losa J, Ramón Y, Cajal S et al (2008) S-Adenosylhomocysteine hydrolase downregulation contributes to tumorigenesis. Carcinogenesis 29:2089–2095

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    Article  PubMed  CAS  Google Scholar 

  • Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE (1985) The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 37:1–31

    PubMed  CAS  Google Scholar 

  • Mudd SH (2011) Hypermethioninemias of genetic and non-genetic origin: a review. Am J Med Genet C 157:3–32

    Article  CAS  Google Scholar 

  • Noll C, Planque C, Ripoll C, Guedj F, Diez A, Ducros V et al (2009) DYRK1A, a novel determinant of the methionine-homocysteine cycle in different mouse models overexpressing this Down-syndrome-associated kinase. PLoS One 4:e7540

    Article  PubMed  Google Scholar 

  • Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  PubMed  CAS  Google Scholar 

  • Raaf L, Noll C, Cherifi M, Benazzoug Y, Delabar JM, Janel N (2010) Hyperhomocysteinemia induced Dyrk1a downregulation results in cardiomyocyte hypertrophy rats. Int J Cardiol 145:306–307

    Article  PubMed  Google Scholar 

  • obert K, Santiard-Baron D, Chassé JF, Paly E, Aupetit J, Kamoun K et al (2004) The neuronal SAPK/JNK pathway is altered in a murine model of hyperhomocysteinemia. J Neurochem 89:33–43

    Article  PubMed  CAS  Google Scholar 

  • Robert K, Pages C, Ledru A, Delabar J, Caboche J, Janel N (2005) Regulation of extracellular signal-regulated kinase by homocysteine in hippocampus. Neuroscience 133:925–935

    Article  PubMed  CAS  Google Scholar 

  • Ronan A, Fagan K, Christie L, Conroy J, Nowak NJ, Turner G (2007) Familial 4.3 Mb duplication of 21q22 sheds new light on the Down syndrome critical region. J Med Genet 44:448–451

    Article  PubMed  CAS  Google Scholar 

  • Ryoo SR, Cho HJ, Lee HW, Jeong HK, Radnaabazar C, Kim YS et al (2008) Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer's disease. J Neurochem 104:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Ryu YS, Park SY, Jung MS, Yoon SH, Kwen MY, Lee SY et al (2010) Dyrk1A-mediated phosphorylation of Presilin 1: a functional link between Down syndrome and Alzheimer’s disease. J Neurochem 115:574–584

    Article  PubMed  CAS  Google Scholar 

  • Sachdev PS, Valenzuela M, Wang XL, Looi JC, Brodaty H (2002) Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology 58:1539–1541

    Article  PubMed  CAS  Google Scholar 

  • Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow MR, Maeda N (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci USA 92:1585–1589

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y et al (2010) Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PloS ONE 5:e8579

    Article  PubMed  Google Scholar 

  • Zhang CE, Wei W, Liu YH, Peng JH, Tian Q, Liu GP et al (2009) Hyperhomocysteinemia increases beta-amyloid by enhancing expression of gamma-secretase and phosphorylation of amyloid precursor protein in rat brain. Am J Pathol 174:1481–1491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fondation Jérome Lejeune and the Agence Nationale de la Recherche (MNP grant). Christophe Noll is supported by a fellowship from the Ministère de l'Enseignement supérieur et de la Recherche. We acknowledge the platform accommodation and animal testing of the animal house at the Institute Jacques-Monod (University Paris Diderot).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Janel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planque, C., Dairou, J., Noll, C. et al. Mice Deficient in Cystathionine Beta Synthase Display Increased Dyrk1A and SAHH Activities in Brain. J Mol Neurosci 50, 1–6 (2013). https://doi.org/10.1007/s12031-012-9835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9835-0

Keywords

Navigation