Skip to main content
Log in

F-Actin–Myosin II Inhibitors Affect Chromaffin Granule Plasma Membrane Distance and Fusion Kinetics by Retraction of the Cytoskeletal Cortex

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Chromaffin cell catecholamines are released when specialized secretory vesicles undergo exocytotic membrane fusion. Evidence indicates that vesicle supply and fusion are controlled by the activity of the cortical F-actin–myosin II network. To study in detail cell cortex and vesicle interactions, we use fluorescent labeling with GFP–lifeact and acidotropic dyes in confocal and evanescent wave microscopy. These techniques provide structural details and dynamic images of chromaffin granules caged in a complex cortical structure. Both the movement of cortical structures and granule motion appear to be linked, and this motion can be restricted by the myosin II-specific inhibitor, blebbistatin, and the F-actin stabilizer, jasplakinolide. These treatments also affect the position of the vesicles in relation to the plasma membrane, increasing the distance between them and the fusion sites. Consequently, we observed slower single vesicle fusion kinetics in treated cells after neutralization of acridine orange-loaded granules during exocytosis. Increasing the distance between the granules and the fusion sites appears to be linked to the retraction of the F-actin cytoskeleton when treated with jasplakinolide. Thus, F-actin–myosin II inhibitors appear to slow granule fusion kinetics by altering the position of vesicles after relaxation of the cortical network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoki R, Kitaguchi T, Oya M, Yanagihara Y, Sato M, Miyawaki A, Tsuboi T (2010) Duration of fusion pore opening and the amount of hormone released are regulated by myosin II during kiss-and-run exocytosis. Biochem J 429:497–504

    Article  PubMed  CAS  Google Scholar 

  • Aunis D, Bader MF (1988) The cytoskeleton as a barrier to exocytosis in secretory cells. J Exp Biol 139:253–266

    PubMed  CAS  Google Scholar 

  • Becherer U, Moser T, Stuhmer W, Oheim M (2003) Calcium regulates exocytosis at the level of single vesicles. Nat Neurosci 6:846–853

    Article  PubMed  CAS  Google Scholar 

  • Berberian K, Torres AJ, Fang Q, Kisler K, Lindau M (2009) F-actin and myosin II accelerate catecholamine release from chromaffin granules. J Neurosci 29:863–870

    Article  PubMed  CAS  Google Scholar 

  • Bubb MR, Senderowicz AM, Sausville EA, Duncan KL, Korn ED (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem 269:14869–14871

    PubMed  CAS  Google Scholar 

  • Cole JC, Villa BR, Wilkinson RS (2000) Disruption of actin impedes transmitter release in snake motor terminals. J Physiol 525(Pt 3):579–586

    Article  PubMed  CAS  Google Scholar 

  • Doreian BW, Fulop TG, Smith CB (2008) Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. J Neurosci 28:4470–4478

    Article  PubMed  CAS  Google Scholar 

  • Fassauer D, Eliason WK, Brunger AT, Jahn R (1998) Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. Biochemistry 37:10354–10362

    Article  Google Scholar 

  • Gil A, Viniegra S, Gutiérrez LM (1998) Dual effects of botulinum neurotoxin A on the secretory stages of chromaffin cells. Eur J Neurosci 10:3369–3378

    Article  PubMed  CAS  Google Scholar 

  • Giner D, Neco P, Frances MM, Lopez I, Viniegra S, Gutierrez LM (2005) Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J Cell Sci 118:2871–2880

    Article  PubMed  CAS  Google Scholar 

  • Giner D, Lopez I, Villanueva J, Torres V, Viniegra S, Gutierrez LM (2007) Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells. Neuroscience 146:659–669

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez LM, Quitanar JL, Viniegra S, Salinas E, Moya F, Reig JA (1995) Anti-syntaxin antibodies inhibit calcium-dependent catecholamine secretion from permeabilized chromaffin cells. Biochem Bipphys Res Commun 206:1–7

    Article  CAS  Google Scholar 

  • Henkel AW, Upmann I, Bartl CR, Bonsch D, Reichardt C, Maler JM, Nurnberger M, Umstatter R, Reulbach U, Kornhuber J, Wiltfang J (2006) Light-induced exocytosis in cell development and differentiation. J Cell Biochem 97:1393–1406

    Article  PubMed  CAS  Google Scholar 

  • Herrmann C, Wray J, Travers F, Barman T (1992) Effect of 2,3-butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry 31:12227–12232

    Article  PubMed  CAS  Google Scholar 

  • Johns LM, Levitan ES, Shelden EA, Holz RW, Axelrod D (2001) Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J Cell Biol 153:177–190

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Lisman JE (1999) A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci 19:4314–4324

    PubMed  CAS  Google Scholar 

  • Kumakura K, Sasaki K, Sakurai T, Ohara-Imaizumi M, Misonou H, Nakamura S, Matsuda Y, Nonomura Y (1994) Essential role of myosin light chain kinase in the mechanism for MgATP-dependent priming of exocytosis in adrenal chromaffin cells. J Neurosci 14:7695–7703

    PubMed  CAS  Google Scholar 

  • Kuromi H, Kidokoro Y (1998) Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20:917–925

    Article  PubMed  CAS  Google Scholar 

  • Lang T, Wacker I, Wunderlich I, Rohrbach A, Giese G, Soldati T, Almers W (2000) Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys J 78:2863–2877

    Article  PubMed  CAS  Google Scholar 

  • Limouze J, Straight AF, Mitchison T, Sellers JR (2004) Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell Motil 25:337–341

    Article  PubMed  CAS  Google Scholar 

  • Lopez I, Ortiz JA, Villanueva J, Torres V, Torregrosa-Hetland CJ, Frances MM, Viniegra S, Gutierrez LM (2009) Vesicle motion and fusion are altered in chromaffin cells with increased SNARE cluster dynamics. Traffic 10:172–185

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Colicos MA, Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27:539–550

    Article  PubMed  CAS  Google Scholar 

  • Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658

    Article  PubMed  CAS  Google Scholar 

  • Neco P, Gil A, Frances MM, Viniegra S, Gutierrez LM (2002) The role of myosin in vesicle transport during bovine chromaffin cell secretion. Biochem J 368:405–413

    Article  PubMed  CAS  Google Scholar 

  • Neco P, Rossetto O, Gil A, Montecucco C, Gutierrez LM (2003a) Taipoxin induces F-actin fragmentation and enhances release of catecholamines in bovine chromaffin cells. J Neurochem 85:329–337

    Article  PubMed  CAS  Google Scholar 

  • Neco P, Giner D, Frances MM, Viniegra S, Gutierrez LM (2003b) Differential participation of actin- and tubulin-based vesicle transport systems during secretion in bovine chromaffin cells. Eur J Neurosci 18:733–742

    Article  PubMed  Google Scholar 

  • Neco P, Giner D, Viniegra S, Borges R, Villarroel A, Gutierrez LM (2004) New roles of myosin II during vesicle transport and fusion in chromaffin cells. J Biol Chem 279:27450–27457

    Article  PubMed  CAS  Google Scholar 

  • Neco P, Fernandez-Peruchena C, Navas S, Gutierrez LM, Ade Toledo G, Ales E (2008) Myosin II contributes to fusion pore expansion during exocytosis. J Biol Chem 283:10949–10957

    Article  PubMed  CAS  Google Scholar 

  • Ohara-Imaizumi M, Sakurai T, Nakamura S, Nakanishi S, Matsuda Y, Muramatsu S, Nonomura Y, Kumakura K (1992) Inhibition of Ca(2+)-dependent catecholamine release by myosin light chain kinase inhibitor, wortmannin, in adrenal chromaffin cells. Biochem Biophys Res Commun 185:1016–1021

    Article  PubMed  CAS  Google Scholar 

  • Oheim M, Stuhmer W (2000) Tracking chromaffin granules on their way through the actin cortex. Eur Biophys J 29:67–89

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60:910–921

    Article  PubMed  CAS  Google Scholar 

  • Reig JA, Viniegra S, Ballesta JJ, Palmero M, Gutierrez LM (1993) Naphthalenesulfonamide derivatives ML9 and W7 inhibit catecholamine secretion in intact and permeabilized chromaffin cells. Neurochem Res 18:317–323

    Article  PubMed  CAS  Google Scholar 

  • Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  PubMed  CAS  Google Scholar 

  • Sakaba T, Neher E (2003) Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse. J Neurosci 23:837–846

    PubMed  CAS  Google Scholar 

  • Sankaranarayanan S, Atluri PP, Ryan TA (2003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci 6:127–135

    Article  PubMed  CAS  Google Scholar 

  • Sontag JM, Aunis D, Bader MF (1988) Peripheral actin filaments control calcium-mediated catecholamine release from streptolysin-O-permeabilized chromaffin cells. Eur J Cell Biol 46:316–326

    PubMed  CAS  Google Scholar 

  • Trifaro JM, Bader MF, Doucet JP (1985) Chromaffin cell cytoskeleton: its possible role in secretion Can. J Biochem Cell Biol 63:661–679

    CAS  Google Scholar 

  • Vitale ML, Seward EP, Trifaro JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353–363

    Article  PubMed  CAS  Google Scholar 

  • Wang XH, Zheng JQ, Poo MM (1996) Effects of cytochalasin treatment on short-term synaptic plasticity at developing neuromuscular junctions in frogs. J Physiol 491(Pt 1):187–195

    PubMed  CAS  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministry of Science and Innovation (MICINN, BFU2008-00731, and BFU2011-25095) and the Generalitat Valenciana (ACOMP2011/090) to LMG. IL and CT were recipients of fellowships from the Spanish Ministry of Education and Science (MEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villanueva, J., Torres, V., Torregrosa-Hetland, C.J. et al. F-Actin–Myosin II Inhibitors Affect Chromaffin Granule Plasma Membrane Distance and Fusion Kinetics by Retraction of the Cytoskeletal Cortex. J Mol Neurosci 48, 328–338 (2012). https://doi.org/10.1007/s12031-012-9800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9800-y

Keywords

Navigation