Skip to main content

Electromagnetic Field Stimulation Potentiates Endogenous Myelin Repair by Recruiting Subventricular Neural Stem Cells in an Experimental Model of White Matter Demyelination

Abstract

Electromagnetic fields (EMFs) may affect the endogenous neural stem cells within the brain. The aim of this study was to assess the effects of EMFs on the process of toxin-induced demyelination and subsequent remyelination. Demyelination was induced using local injection of lysophosphatidylcholine within the corpus callosum of adult female Sprague–Dawley rats. EMFs (60 Hz; 0.7 mT) were applied for 2 h twice a day for 7, 14, or 28 days postlesion. BrdU labeling and immunostaining against nestin, myelin basic protein (MBP), and BrdU were used for assessing the amount of neural stem cells within the tissue, remyelination patterns, and tracing of proliferating cells, respectively. EMFs significantly reduced the extent of demyelinated area and increased the level of MBP staining within the lesion area on days 14 and 28 postlesion. EMFs also increased the number of BrdU- and nestin-positive cells within the area between SVZ and lesion as observed on days 7 and 14 postlesion. It seems that EMF potentiates proliferation and migration of neural stem cells and enhances the repair of myelin in the context of demyelinating conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arendash GW, Sanchez-Ramos J et al (2010) Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheim Dis 19(1):191–210

    Google Scholar 

  2. Arias-Carrión O, Verdugo-DÃaz L et al (2004) Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J Neurosci Res 78:16–28

    PubMed  Article  Google Scholar 

  3. Bistolfi F (2007) Extremely low-frequency pulsed magnetic fields and multiple sclerosis: effects on neurotransmission alone or also on immunomodulation? Building a working hypothesis. Neuroradiol J 20:676–693

    Google Scholar 

  4. Calida DM, Constantinescu C et al (2001) Cutting edge: C3, a key component of complement activation, is not required for the development of myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis in mice. J Immunol 166:723–726

    PubMed  CAS  Google Scholar 

  5. Cantarella C, Cayre M et al (2008) Intranasal HB-EGF administration favors adult SVZ cell mobilization to demyelinated lesions in mouse corpus callosum. Dev Neurobiol 68:223–236

    PubMed  Article  Google Scholar 

  6. Caon C, Saunders C et al (2010) Injectable disease-modifying therapy for relapsing-remitting multiple sclerosis: a review of adherence data. J Neurosci Nurs 42(5):S5–S9

    PubMed  Article  Google Scholar 

  7. Cayre M, Bancila M et al (2006) Migrating and myelinating potential of subventricular zone neural progenitor cells in white matter tracts of the adult rodent brain. Mol Cell Neurosci 31:748–758

    PubMed  Article  CAS  Google Scholar 

  8. Cuccurazzu B, Leone L et al (2010) Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol 226(1):173–182

    PubMed  Article  Google Scholar 

  9. Decker L, Picard-Riera N et al (2002) Growth factor treatment promotes mobilization of young but not aged adult subventricular zone precursors in response to demyelination. J Neurosci Res 69:763–771

    PubMed  Article  CAS  Google Scholar 

  10. Dubois-Dalcq M, French-Constant C et al (2005) Enhancing central nervous system remyelination in multiple sclerosis. Neuron 48:9–12

    PubMed  Article  CAS  Google Scholar 

  11. Ernst C, Christie BR (2005) Nestin-expressing cells and their relationship to mitotically active cells in the subventricular zones of the adult rat. Eur J Neurosci 22:3059–3066

    PubMed  Article  Google Scholar 

  12. Franklin R, Blakemore W (1997) To what extent is oligodendrocyte progenitor migration a limiting factor in the remyelination of multiple sclerosis lesions? Mul Scler 3:84–87

    Article  CAS  Google Scholar 

  13. Funk RHW, Monsees TK (2006) Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. Cells Tissues Organs 182:59–78

    PubMed  Article  Google Scholar 

  14. Gallo V, Armstrong R (2008) Myelin repair strategies: a cellular view. Curr Opin Neurol 21(3):278–283

    PubMed  Article  Google Scholar 

  15. Giacomini PS, Arnold DL et al (2009) Defining multiple sclerosis treatment response with magnetic resonance imaging. Arch Neurol 66(1):19–20

    PubMed  Article  Google Scholar 

  16. Goudarzvand M, Javan M et al (2010) Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local Injection of ethidium bromide. Cell Mol Neurobiol 30:289–299

    PubMed  Article  CAS  Google Scholar 

  17. Griffiths I, Klugmann M et al (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280:1610–1613

    PubMed  Article  CAS  Google Scholar 

  18. Hakansson N, Gustavsson P (2003) Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiology 14:420–428

    PubMed  Google Scholar 

  19. Hernández-Hernández H, Cruces-Solis H et al (2009) Neurite outgrowth on chromaffin cells applying extremely low frequency magnetic fields by permanent magnets. Arch Med Res 40(7):545–550

    PubMed  Article  Google Scholar 

  20. Johansen C (2004) Electromagnetic fields and health effects - epidemiologic studies of cancer, diseases of the central nervous system and arrhythmia-related heart disease. Scand J Work Environ Health 30:1–30

    PubMed  Article  Google Scholar 

  21. Judit M, Stone TW (2007) New advances in the rehabilitation of CNS diseases applying rTMS. Expert Rev Neurother 7(2):165–177

    Article  Google Scholar 

  22. Kerniea SG, Parent JM (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37(2):267–274

    Article  Google Scholar 

  23. Kronenberg G, Reuter K et al (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455–463

    PubMed  Article  Google Scholar 

  24. Lappe-Siefke C, Goebbels S et al (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33:366–374

    PubMed  Article  CAS  Google Scholar 

  25. Lappin M, Lawrie F et al (2003) Effects of a pulsed electromagnetic therapy on multiple sclerosis fatigue and quality of life: a double-blind, placebo controlled trial. Altern Ther Health Med 9(4):38–48

    PubMed  Google Scholar 

  26. Lendahl U, Zimmerman LB et al (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    PubMed  Article  CAS  Google Scholar 

  27. Liburdy RP (1992) Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett 301:53–59

    PubMed  Article  CAS  Google Scholar 

  28. Mally J, Stone T (1999) Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation. J Neurol Sci 162:179–184

    PubMed  Article  CAS  Google Scholar 

  29. Markowitz C (2010) The current landscape and unmet needs in multiple sclerosis. Am J Manag Care 16(8):S211–S218

    PubMed  Google Scholar 

  30. Mason J, Toews A et al (2004) Oligodendrocytes and progenitors become progressively depleted with chronically demyelinated lesions. Am J Path 164:1673–1682

    PubMed  Article  Google Scholar 

  31. Miravalle A, Corboy JR (2010) Therapeutic options in multiple sclerosis. Neurology 75(18):S22–S27

    PubMed  Article  Google Scholar 

  32. Mozafari S, Sherafat MA et al (2010) Visual evoked potentials and MBP gene expression imply endogenous myelin repair in adult rat optic nerve and chiasm following local lysolecithin induced demyelination. Brain Res 1351:50–56

    PubMed  Article  CAS  Google Scholar 

  33. Mozafari S, Javan M et al (2011) Analysis of structural and molecular events associated with adult rat optic chiasm and nerves demyelination and remyelination; possible role for 3rd ventricle proliferating cells. NeuroMol Med 12:138–150

    Article  Google Scholar 

  34. Nait-Oumesmar B, Picard-Riéra N et al (2008) The role of SVZderived neural precursors in demyelinating diseases: from animal models to multiple sclerosis. J Neurol Sci 268:26–31

    Article  Google Scholar 

  35. Nave K-A, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Ann Rev Neurosci 31:535–561

    PubMed  Article  CAS  Google Scholar 

  36. Noseworthy JH, Lucchinetti C et al (2000) Multiple sclerosis. New Engl J Med 343:938–952

    PubMed  Article  CAS  Google Scholar 

  37. Papadopoulos D, Pham-Dinh D et al (2006) Axon loss is responsible for chronic neurological deficit following inflammatory demyelination in the rat. Exp Neurol 197:373–385

    PubMed  Article  CAS  Google Scholar 

  38. Pedro JAD, Pérez-Caballer AJ et al (2005) Pulsed electromagnetic fields induce peripheral nerve regeneration and endplate enzymatic changes. Bioelectromagnetics 26(1):20–27

    PubMed  Article  Google Scholar 

  39. Piacentini R, Ripoli C et al (2007) Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Cav1-channel activity. J Cell Physiol 215(1):129–139

    Article  Google Scholar 

  40. Piatkowski J, Kern S et al (2009) Effect of BEMER magnetic field therapy on the level of fatigue in patients with multiple sclerosis: a randomized, double-blind controlled trial. J Altern Complementary Med 15(5):507–511

    Article  Google Scholar 

  41. Picard-Riera N, Decker L et al (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A 99:13211–13216

    PubMed  Article  CAS  Google Scholar 

  42. Pluchino S, Martino G (2008) The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis. J Neurol Sci 265(1):105–110

    PubMed  Article  CAS  Google Scholar 

  43. Popko B (2003) Myelin: not just a conduit for conduction. Nat Genet 33:327–328

    PubMed  Article  CAS  Google Scholar 

  44. Rajendra P, Sujatha H et al (2004) Biological effects of power frequency magnetic fields: neurochemical and toxicological changes in developing chick embryos. Biomagn Res Technol 2(1):1–9

    PubMed  Article  Google Scholar 

  45. Richards TL, Lappin MS et al (1997) Double-blind study of pulsing magnetic field effects on multiple sclerosis. J Altern Complementary Med 3(1):21–29

    Article  CAS  Google Scholar 

  46. Sandyk R (1992) Successful treatment of multiple sclerosis with magnetic fields. Int J Neurosci Lett 66:237–250

    CAS  Google Scholar 

  47. Sandyk R (1995) Premenstrual exacerbation of symptoms in multiple sclerosis is attenuated by treatment with weak electromagnetic fields. Int J Neurosci 83(3–4):187–198

    Google Scholar 

  48. Sandyk R (1996) Treatment with weak electromagnetic fields improves fatigue associated with multiple sclerosis. Int J Neurosci 84:177–186

    PubMed  Article  CAS  Google Scholar 

  49. Sandyk R (1997) Immediate recovery of cognitive functions and resolution of fatigue by treatment with weak electromagnetic fields in a patient with multiple sclerosis. Int J Neurosci 90:59–74

    PubMed  Article  CAS  Google Scholar 

  50. Sandyk R, Dann LC (1994) Weak electromagnetic fields attenuate tremor in multiple sclerosis. Int J Neurosci 79(3–4):199–212

    PubMed  Article  CAS  Google Scholar 

  51. Sandyk R, Dann LC (1995) Resolution of Lhermitte’s sign in multiple sclerosis by treatment with weak electromagnetic fields. Int J Neurosci 81(1–2):215–224

    PubMed  Article  CAS  Google Scholar 

  52. Sandyk R, Lacono R (1994) Improvement by picoTesla range magnetic fields of perceptual-motor performance and visual memory in a patient with chronic progressive multiple sclerosis. Int J Neurosci Lett 78:53–66

    Article  CAS  Google Scholar 

  53. Schlaier J, Eichhammer P et al (2007) Effects of spinal cord stimulation on cortical excitability in patients with chronic neuropathic pain: a pilot study. Eur J Pain 11:863–868

    PubMed  Article  Google Scholar 

  54. Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784–1793

    PubMed  CAS  Google Scholar 

  55. Sisken BF, Kanje M et al (1989) Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields. Brain Res 485(2):309–316

    PubMed  Article  CAS  Google Scholar 

  56. Smith KJ, Blakemore WF et al (1979) Central remyelination restores secure conduction. Nature 280:395–396

    PubMed  Article  CAS  Google Scholar 

  57. Thomas P, Thomas S et al (2010) Multi-centre parallel arm randomised controlled trial to assess the effectiveness and cost-effectiveness of a group-based cognitive behavioural approach to managing fatigue in people with multiple sclerosis. BMC Neurol 16(10):43

    Article  Google Scholar 

  58. Thompson A, Toosy A et al (2010) Pharmacological management of symptoms in multiple sclerosis: current approaches and future directions. Lancet Neurol 9(12):1182–1199

    PubMed  Article  CAS  Google Scholar 

  59. Walker JL, Kryscio R et al (2007) Electromagnetic field treatment of nerve crush injury in a rat model: effect of signal configuration on functional recovery. Bioelectromagnetics 28(4):256–263

    PubMed  Article  Google Scholar 

  60. Weintraub MI, Herrmann DN, Smith AG, Backonja MM, Cole SP (2009) Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: a randomized controlled trial. Arch Phys Med Rehabil 90:1102–1109

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Neuroscience research center, Shahid Beheshti University of Medical Sciences, Tehran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sherafat, M.A., Heibatollahi, M., Mongabadi, S. et al. Electromagnetic Field Stimulation Potentiates Endogenous Myelin Repair by Recruiting Subventricular Neural Stem Cells in an Experimental Model of White Matter Demyelination. J Mol Neurosci 48, 144–153 (2012). https://doi.org/10.1007/s12031-012-9791-8

Download citation

Keywords

  • Electromagnetic field stimulation
  • Myelin repair
  • Multiple sclerosis
  • Lysophosphatidylcholine
  • Endogenous neural stem cells
  • Rat