Skip to main content
Log in

Compensatory Recovery of Blood Glucose Levels in KKAy Mice Fed a High-Fat Diet: Insulin-Sparing Effects of PACAP Overexpression in β Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Inadequate compensatory insulin secretion is observed during the development of type 2 diabetes and deteriorates over time in a manner that is difficult to reverse. Here, we found that plasma glucose levels in genetically diabetic KKAy mice fed a high-fat diet were markedly increased in young mice. However, the levels started to decrease at 22 weeks of age and returned to normal levels at around 40 weeks of age. These changes were accompanied by a marked increase in insulin levels from week 25 onwards. Decreased energy intake and suppressed fat pad accumulation were observed at 44–45 weeks of age compared with those at 19–22 weeks of age. β cell-specific overexpression of pituitary adenylate cyclase-activating polypeptide (PACAP), an insulinotropic neuropeptide, decreased the insulin levels required to compensate for hyperglycemia. Glucose disposal was significantly enhanced despite impaired insulin sensitivity in 41–44-week-old Ay mice without or with PACAP overexpression. In conclusion, the present results provide further evidence that PACAP is involved in the regulation of hyperinsulinemia and islet hyperplasia in type 2 diabetes. Our results also indicate that Ay mice fed a high-fat diet constitute an animal model suitable to study compensatory islet hyperplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams BA, Gray SL, Isaac ER, Bianco AC, Vidal-Puig AJ, Sherwood NM (2008) Feeding and metabolism in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology 149(4):1571–1580

    Article  PubMed  CAS  Google Scholar 

  • Ahrén B (2008) Role of pituitary adenylate cyclase-activating polypeptide in the pancreatic endocrine system. Ann N Y Acad Sci 1144:28–35

    Article  PubMed  Google Scholar 

  • Ahrén B, Pacini G (2002) Insufficient islet compensation to insulin resistance vs. reduced glucose effectiveness in glucose-intolerant mice. Am J Physiol Endocrinol Metab 283(4):E738–744

    PubMed  Google Scholar 

  • Andreasen CH, Andersen G (2009) Gene-environment interactions and obesity—further aspects of genomewide association studies. Nutrition 25(10):998–1003

    Article  PubMed  CAS  Google Scholar 

  • Burcelin R, Crivelli V, Dacosta A, Roy-Tirelli A, Thorens B (2002) Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. Am J Physiol Endocrinol Metab 282(4):E834–842

    PubMed  CAS  Google Scholar 

  • Cefalu WT (2006) Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. ILAR J 47(3):186–198

    PubMed  CAS  Google Scholar 

  • Dalle S, Ravier MA, Bertrand G (2011) Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass: new therapeutic strategies and consequences for drug screening. Cell Signal 23(3):522–528

    Article  PubMed  CAS  Google Scholar 

  • Green BD, Irwin N, Cassidy RS, Gault VA, Flatt PR (2006) Long-term administration of PACAP receptor antagonist, PACAP(6-27), impairs glucose tolerance and insulin sensitivity in obese diabetic ob/ob mice. Peptides 27(9):2343–2349

    Article  PubMed  CAS  Google Scholar 

  • Haba R, Shintani N, Onaka Y et al (2012) Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: possible role of activation of the central amygdala. Behav Brain Res 228(2):423–431

    Article  PubMed  CAS  Google Scholar 

  • Hamagami K, Sakurai Y, Shintani N et al (2009) Over-expression of pancreatic pituitary adenylate cyclase-activating polypeptide (PACAP) aggravates cerulein-induced acute pancreatitis in mice. J Pharmacol Sci 110(4):451–458

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuka H, Shino A, Suzuoki Z (1970) General survey of diabetic features of yellow KK mice. Endocrinol Jpn 17(1):23–35

    Article  PubMed  CAS  Google Scholar 

  • Nakata M, Yada T (2007) PACAP in the glucose and energy homeostasis: physiological role and therapeutic potential. Curr Pharm Des 13(11):1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Nakata M, Kohno D, Shintani N et al (2004) PACAP deficient mice display reduced carbohydrate intake and PACAP activates NPY-containing neurons in the rat hypothalamic arcuate nucleus. Neurosci Lett 370(2–3):252–256

    Article  PubMed  CAS  Google Scholar 

  • Parekh PI, Petro AE, Tiller JM, Feinglos MN, Surwit RS (1998) Reversal of diet-induced obesity and diabetes in C57BL/6J mice. Metabolism 47(9):1089–1096

    Article  PubMed  CAS  Google Scholar 

  • Romao I, Roth J (2008) Genetic and environmental interactions in obesity and type 2 diabetes. J Am Diet Assoc 108(4 Suppl 1):S24–28

    Article  PubMed  Google Scholar 

  • Sakurai Y, Shintani N, Hayata A, Hashimoto H, Baba A (2011) Trophic effects of PACAP on pancreatic islets: a mini-review. J Mol Neurosci 43(1):3–7

    Article  PubMed  CAS  Google Scholar 

  • Samuel VT, Liu ZX, Qu X et al (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279(31):32345–32353

    Article  PubMed  CAS  Google Scholar 

  • Shino A, Iwatsuka H (1970) Morphological observations on pancreatic islets of spontaneous diabetic mice, "Yellow KK". Endocrinol Jpn 17(6):459–476

    Article  PubMed  CAS  Google Scholar 

  • Shintani N, Tomimoto S, Hashimoto H, Kawaguchi C, Baba A (2003) Functional roles of the neuropeptide PACAP in brain and pancreas. Life Sci 74(2–3):337–343

    Article  PubMed  CAS  Google Scholar 

  • Smith BK, Andrews PK, West DB (2000) Macronutrient diet selection in thirteen mouse strains. Am J Physiol Regul Integr Comp Physiol 278(4):R797–805

    PubMed  CAS  Google Scholar 

  • Sohda T, Kawamatsu Y, Fujita T, Meguro K, Ikeda H (2002) Discovery and development of a new insulin sensitizing agent, pioglitazone. Yakugaku Zasshi 122(11):909–918

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125(3):451–472

    PubMed  CAS  Google Scholar 

  • Tomimoto S, Hashimoto H, Shintani N et al (2004) Overexpression of pituitary adenylate cyclase-activating polypeptide in islets inhibits hyperinsulinemia and islet hyperplasia in agouti yellow mice. J Pharmacol Exp Ther 309(2):796–803

    Article  PubMed  CAS  Google Scholar 

  • Tomimoto S, Ojika T, Shintani N et al (2008) Markedly reduced white adipose tissue and increased insulin sensitivity in adcyap1-deficient mice. J Pharmacol Sci 107(1):41–48

    Article  PubMed  CAS  Google Scholar 

  • Tsunekawa S, Miura Y, Yamamoto N et al (2005) Systemic administration of pituitary adenylate cyclase-activating polypeptide maintains beta-cell mass and retards onset of hyperglycaemia in beta-cell-specific calmodulin-overexpressing transgenic mice. Eur J Endocrinol 152(5):805–811

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61(3):283–357

    Article  PubMed  CAS  Google Scholar 

  • Weinstock RS, Murray FT, Diani A, Sangani GA, Wachowski MB, Messina JL (1997) Pioglitazone: in vitro effects on rat hepatoma cells and in vivo liver hypertrophy in KKAy mice. Pharmacology 54(4):169–178

    Article  PubMed  CAS  Google Scholar 

  • Winzell MS, Ahrén B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215–219

    Article  PubMed  Google Scholar 

  • Yada T, Sakurada M, Ihida K et al (1994) Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra-pancreatic regulator of insulin secretion from islet beta-cells. J Biol Chem 269(2):1290–1293

    PubMed  CAS  Google Scholar 

  • Yada T, Sakurada M, Filipsson K, Kikuchi M, Ahrén B (2000) Intraperitoneal PACAP administration decreases blood glucose in GK rats, and in normal and high fat diet mice. Ann N Y Acad Sci 921:259–263

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Hashimoto H, Tomimoto S et al (2003) Overexpression of PACAP in transgenic mouse pancreatic beta-cells enhances insulin secretion and ameliorates streptozotocin-induced diabetes. Diabetes 52(5):1155–1162

    Article  PubMed  CAS  Google Scholar 

  • Yu R, Yi T, Xie S, Hong A (2008) Long-term administration of maxadilan improves glucose tolerance and insulin sensitivity in mice. Peptides 29(8):1347–1353

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and the Funding Program for Next Generation World-Leading Researchers (H.H). Y.S. is a JSPS research fellow and is supported by Research Fellowships from the JSPS for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Hashimoto.

Additional information

Authors Yusuke Sakurai, Hiroaki Inoue and Norihito Shintani equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakurai, Y., Inoue, H., Shintani, N. et al. Compensatory Recovery of Blood Glucose Levels in KKAy Mice Fed a High-Fat Diet: Insulin-Sparing Effects of PACAP Overexpression in β Cells. J Mol Neurosci 48, 647–653 (2012). https://doi.org/10.1007/s12031-012-9758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9758-9

Keywords

Navigation