Skip to main content
Log in

Involvement of PACAP/ADNP Signaling in the Resistance to Cell Death in Malignant Peripheral Nerve Sheath Tumor (MPNST) Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Malignant peripheral nerve sheath tumors (MPNSTs) are sarcomas able to grow under conditions of metabolic stress caused by insufficient nutrients or oxygen. Both pituitary adenylate cyclase-activating polypeptide (PACAP) and activity-dependent neuroprotective protein (ADNP) have glioprotective potential. However, whether PACAP/ADNP signaling is involved in the resistance to cell death in MPNST cells remains to be clarified. Here, we investigated the involvement of this signaling system in the survival response of MPNST cells against hydrogen peroxide (H2O2)-evoked death both in the presence of normal serum (NS) and in serum-starved (SS) cells. Results showed that ADNP levels increased time-dependently (6–48 h) in SS cells. Treatment with PACAP38 (10−9 to 10−5 M) dose-dependently increased ADNP levels in NS but not in SS cells. PAC1/VPAC receptor antagonists completely suppressed PACAP-stimulated ADNP increase and partially reduced ADNP expression in SS cells. NS-cultured cells exposed to H2O2 showed significantly reduced cell viability (~50 %), increased p53 and caspase-3, and DNA fragmentation, without affecting ADNP expression. Serum starvation significantly reduced H2O2-induced detrimental effects in MPNST cells, which were not further ameliorated by PACAP38. Altogether, these finding provide evidence for the involvement of an endogenous PACAP-mediated ADNP signaling system that increases MPNST cell resistance to H2O2-induced death upon serum starvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ago Y, Yoneyama M, Ishihama T et al (2011) Role of endogenous pituitary adenylate cyclase-activating polypeptide in adult hippocampal neurogenesis. Neuroscience 172:554–561

    Article  PubMed  CAS  Google Scholar 

  • Bassan M, Zamostiano R, Davidson A et al (1999) Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide. J Neurochem 72:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Blouw B, Song H, Tihan T et al (2003) The hypoxic response of tumors is dependent on their microenvironment. Canc Cell 4:133–146

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carroll SL, Ratner N (2008) How does the Schwann cell lineage form tumors in NF1? Glia 56:1590–1605

    Article  PubMed  Google Scholar 

  • Castorina A, Tiralongo A, Giunta S, Carnazza ML, Rasi G, D’Agata V (2008) PACAP and VIP prevent apoptosis in schwannoma cells. Brain Res 1241:29–35

    Article  PubMed  CAS  Google Scholar 

  • Dejda A, Sokołowska P, Nowak JZ (2005) Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol Rep 57:307–320

    PubMed  CAS  Google Scholar 

  • Forloni G, Angeretti N, Chiesa N et al (1993) Neurotoxicity of a prion protein fragment. Nature 362:543–546

    Article  PubMed  CAS  Google Scholar 

  • Friedman JM, Gutmann DH, MacCollin M, Ricardi VM (1999) Neurofibromatosis: phenotype, natural history, and pathogenesis, 3rd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Giladi E, Hill JM, Dresner E et al (2007) Vasoactive intestinal peptide (VIP) regulates activity-dependent neuroprotective protein (ADNP) expression in vivo. J Mol Neurosci 33:278–283

    Article  PubMed  CAS  Google Scholar 

  • Gozes I, Divinsky I, Pilzer I et al (2003) From vasoactive intestinal peptide (VIP) through activity-dependent neuroprotective protein (ADNP) to NAP: a view of neuroprotection and cell division. J Mol Neurosci 20:315–322

    Article  PubMed  CAS  Google Scholar 

  • Hamdi Y, Masmoudi-Kouki O, Kaddour H et al (2011) Protective effect of the octadecaneuropeptide on hydrogen peroxide-induced oxidative stress and cell death in cultured rat astrocytes. J Neurochem 118:416–428

    Article  PubMed  CAS  Google Scholar 

  • Harmar AJ, Fahrenkrug J, Gozes I, et al. (2012) IUPHAR Reviews 1: Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Br J Pharmacol (in press)

  • Heasley LE (2001) Autocrine and paracrine signaling through neuropeptide receptors in human cancer. Oncogene 20:1563–1569

    Article  PubMed  CAS  Google Scholar 

  • Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99:1583–1593

    Article  PubMed  CAS  Google Scholar 

  • Kenney-Herbert EM, Ball SL, Al-Mayhani TM, Watts C (2011) Glioblastoma cell lines derived under serum-free conditions can be used as an in vitro model system to evaluate therapeutic response. Cancer Lett 305:50–57

    Article  PubMed  CAS  Google Scholar 

  • Laburthe M, Couvineau A (2002) Molecular pharmacology and structure of VPAC receptors for VIP and PACAP. Regul Pept 108:165–173

    Article  PubMed  CAS  Google Scholar 

  • Lelievre V, Ghiani CA, Seksenyan A, Gressens P, de Vellis J, Waschek JA (2006) Growth factor-dependent actions of PACAP on oligodendrocyte progenitor proliferation. Regul Pept 137:58–66

    Article  PubMed  CAS  Google Scholar 

  • Li M, David C, Kikuta T, Somogyvari-Vigh A, Arimura A (2005) Signaling cascades involved in neuroprotection by subpicomolar pituitary adenylate cyclase-activating polypeptide 38. J Mol Neurosci 27:91–105

    Article  PubMed  Google Scholar 

  • Lutz EM, Ronaldson E, Shaw P, Johnson MS, Holland PJ, Mitchell R (2006) Characterization of novel splice variants of the PAC1 receptor in human neuroblastoma cells: consequences for signaling by VIP and PACAP. Mol Cell Neurosci 31:193–209

    Article  PubMed  CAS  Google Scholar 

  • Masmoudi-Kouki O, Gandolfo P, Leprince J et al (2003) Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates endozepine release from cultured rat astrocytes via a PKA-dependent mechanism. FASEB J 17:17–27

    Article  Google Scholar 

  • Masmoudi-Kouki O, Douiri S, Hamdi Y et al (2011) Pituitary adenylate cyclase-activating polypeptide protects astroglial cells against oxidative stress-induced apoptosis. J Neurochem 117:403–411

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR et al (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    Article  PubMed  CAS  Google Scholar 

  • Nakamachi T, Li M, Shioda S, Arimura A (2006) Signaling involved in pituitary adenylate cyclase-activating polypeptide-stimulated ADNP expression. Peptides 27:1859–1864

    Article  PubMed  CAS  Google Scholar 

  • Pascale A, Fortino I, Covoni S, Trabucchi M, Wetsel WC, Battaini F (1996) Functional impairment in protein kinase C by RACK1 (receptor for activated C kinase 1) deficiency in aged rat brain cortex. J Neurochem 67:2471–2477

    Article  PubMed  CAS  Google Scholar 

  • Perrone F, Da Riva L, Orsenigo M et al (2009) PDGFRA, PDGFRB, EGFR, and downstream signaling activation in malignant peripheral nerve sheath tumor. Neuro Oncol 11:725–736

    Article  PubMed  CAS  Google Scholar 

  • Pinhasov A, Mandel S, Torchinsky A et al (2003) Activity-dependent neuroprotective protein: a novel gene essential for brain formation. Brain Res Dev Brain Res 144:83–90

    Article  PubMed  CAS  Google Scholar 

  • Ravni A, Bourgault S, Lebon A et al (2006) The neurotrophic effects of PACAP in PC12 cells: control by multiple transduction pathways. J Neurochem 98:321–329

    Article  PubMed  CAS  Google Scholar 

  • Reglodi D, Kiss P, Lubics A, Tamas A (2011) Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des 17:962–972

    Article  PubMed  CAS  Google Scholar 

  • Rouzaire-Dubois B, Gérard V, Dubois JM (1993) Involvement of K+ channels in the quercetin-induced inhibition of neuroblastoma cell growth. Pflugers Arch 423:202–205

    Article  PubMed  CAS  Google Scholar 

  • Sangueza OP, Requena L (1998) Neoplasms with neural differentiation: a review. Part II. Malignant neoplasms. Am J Dermapathol 20:89–102

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Sigalov E, Fridkin M, Brenneman DE, Gozes I (2000) VIP-related protection against lodoacetate toxicity in pheochromocytoma (PC12) cells: a model for ischemic/hypoxic injury. J Mol Neurosci 15:147–154

    Article  PubMed  CAS  Google Scholar 

  • Steingart RA, Gozes I (2006) Recombinant activity-dependent neuroprotective protein protects cells against oxidative stress. Mol Cell Endocrinol 252:148–153

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52:269–324

    PubMed  CAS  Google Scholar 

  • Xie Y, Wolff DW, Lin MF, Tu Y (2007) Vasoactive intestinal peptide transactivates the androgen receptor through a protein kinase A-dependent extracellular signal-regulated kinase pathway in prostate cancer LNCaP cells. Mol Pharmacol 72:73–85

    Article  PubMed  CAS  Google Scholar 

  • Zamostiano R, Pinhasov A, Gelber E et al (2001) Cloning and characterization of the human activity-dependent neuroprotective protein. J Biol Chem 276:708–714

    Article  PubMed  CAS  Google Scholar 

  • Zhou CJ, Shioda S, Yada T, Inagaki N, Pleasure SJ, Kikuyama S (2002) PACAP and its receptors exert pleiotropic effects in the nervous system by activating multiple signaling pathways. Curr Protein Pept Sci 3:423–439

    Article  PubMed  CAS  Google Scholar 

  • Zusev M, Gozes I (2004) Differential regulation of activity-dependent neuroprotective protein in rat astrocytes by VIP and PACAP. Regul Pept 123:33–41

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These experiments were partially funded by Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN grant no. 2007SXKWSA) and were supported by the International PhD program in Neuropharmacology, University of Catania, Medical School. We thank Mr P. Asero for his technical support and Dr. F. Murabito for his administrative support. All authors declare that there are no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velia D’Agata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castorina, A., Giunta, S., Scuderi, S. et al. Involvement of PACAP/ADNP Signaling in the Resistance to Cell Death in Malignant Peripheral Nerve Sheath Tumor (MPNST) Cells. J Mol Neurosci 48, 674–683 (2012). https://doi.org/10.1007/s12031-012-9755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9755-z

Keywords

Navigation