Skip to main content

Advertisement

Log in

Role of Mitochondrial Activation in PACAP Dependent Neurite Outgrowth

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) increases neurite outgrowth, although signaling via its receptor PACAP-specific receptor (PAC1R) has not been fully characterized. Because mitochondria also play an important role in neurite outgrowth, we examined whether mitochondria contribute to PACAP-mediated neurite outgrowth. When mouse primary hippocampal neurons and Neuro2a cells were exposed to PACAP, neurite outgrowth and the mitochondrial membrane potential increased in both cell types. These results were reproduced using the PAC1R-specific agonist maxadilan and the adenylate cyclase activator forskolin, whereas the protein kinase A inhibitor H89 and mitochondrial uncoupling agent carbonyl cyanide m-chlorophenyl hydrazone (CCCP) inhibited these effects. Expression levels of peroxisome proliferator-activated receptor γ coactivator 1α (Pgc1α), a master regulator of mitochondrial activation, and its downstream effectors, such as cytochrome C and cytochrome C oxidase subunit 4, increased in response to PACAP. Knocking down Pgc1α expression using small interfering RNA or treatment with CCCP significantly attenuated neurite outgrowth and reduced the mitochondrial membrane potential in PACAP-treated cells. These data suggest that mitochondrial activation plays a key role in PACAP-induced neurite outgrowth via a signaling pathway that includes PAC1R, PKA, and Pgc1α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ATP:

Adenosine triphosphate

CCCP:

Carbonyl cyanide m-chlorophenyl hydrazone

COX4:

Cytochrome C oxidase subunit 4

CREB:

cAMP response element binding protein

CytC:

Cytochrome C

DIV:

Days in vitro

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

JC-1:

5,5′,6,6′-tetra-chloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide

MAP2:

Microtubule-associated protein 2

Δψ m :

Mitochondrial membrane potential

PBS:

Phosphate-buffered saline

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PAC1R:

PACAP-specific receptor

Pgc1α:

Peroxisome proliferator-activated receptor γ coactivator 1α

PKA:

Protein kinase A

siRNA:

Small interfering RNA

References

  • Aglah C, Gordon T, Posse De Chaves EI (2008) cAMP promotes neurite outgrowth and extension through protein kinase A but independently of Erk activation in cultured rat motoneurons. Neuropharmacol 55:8–17

    Article  CAS  Google Scholar 

  • Cheng A, Hou Y, Mattson MP (2010) Mitochondria and neuroplasticity. ASN Neuro 2:e00045

    Article  PubMed  Google Scholar 

  • Christensen AE, Selheim F, De Rooij J et al (2003) cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem 278:35394–35402

    Article  PubMed  CAS  Google Scholar 

  • Dickey AS, Strack S (2011) PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31:15716–15726

    Article  PubMed  CAS  Google Scholar 

  • Estrada M, Uhlen P, Ehrlich BE (2006) Ca2+ oscillations induced by testosterone enhance neurite outgrowth. J Cell Sci 119:733–743

    Article  PubMed  CAS  Google Scholar 

  • Falluel-Morel A, Aubert N, Vaudry D et al (2004) Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. J Neurochem 91:1231–1243

    Article  PubMed  CAS  Google Scholar 

  • Guirland C, Buck KB, Gibney JA, Dicicco-Bloom E, Zheng JQ (2003) Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide. J Neurosci 23:2274–2283

    PubMed  CAS  Google Scholar 

  • Hansel DE, Eipper BA, Ronnett GV (2001) Regulation of olfactory neurogenesis by amidated neuropeptides. J Neurosci Res 66:1–7

    Article  PubMed  CAS  Google Scholar 

  • Horvath G, Racz B, Reglodi D et al (2010) Effects of PACAP on mitochondrial apoptotic pathways and cytokine expression in rats subjected to renal ischemia/reperfusion. J Mol Neurosci 42:411–418

    Article  PubMed  CAS  Google Scholar 

  • Ishihara N, Nomura M, Jofuku A et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    Article  PubMed  CAS  Google Scholar 

  • Kambe Y, Nakamichi N, Georgiev DD, Nakamura N, Taniura H, Yoneda Y (2008) Insensitivity to glutamate neurotoxicity mediated by NMDA receptors in association with delayed mitochondrial membrane potential disruption in cultured rat cortical neurons. J Neurochem 105:1886–1900

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368

    Article  PubMed  CAS  Google Scholar 

  • Lai L, Leone TC, Zechner C, Schaeffer PJ et al (2008) Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev 22:1948–1961

    Article  PubMed  CAS  Google Scholar 

  • Lee CW, Peng HB (2008) The function of mitochondria in presynaptic development at the neuromuscular junction. Mol Biol Cell 19:150–158

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Wu PH, Tarr PT et al (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    Article  PubMed  CAS  Google Scholar 

  • Mansouri S, Ortsater H, Pintor Gallego O, Darsalia V, Sjoholm A, Patrone C (2011) Pituitary adenylate cyclase-activating polypeptide counteracts the impaired adult neural stem cell viability induced by palmitate. J Neurosci Res 4:759–768

    Google Scholar 

  • Maruoka H, Sasaya H, Shimamura Y, Nakatani Y, Shimoke K, Ikeuchi T (2010) Dibutyryl-cAMP up-regulates nur77 expression via histone modification during neurite outgrowth in PC12 cells. J Biochem 148:93–101

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Partin J (1999) Evidence for mitochondrial control of neuronal polarity. J Neurosci Res 56:8–20

    Article  PubMed  CAS  Google Scholar 

  • Mcilvain HB, Baudy A, Sullivan K, Liu D, Pong K, Fennell M, Dunlop J (2006) Pituitary adenylate cyclase-activating peptide (PACAP) induces differentiation in the neuronal F11 cell line through a PKA-dependent pathway. Brain Res 1077:16–23

    Article  PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl RR et al (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    Article  PubMed  CAS  Google Scholar 

  • Monaghan TK, Mackenzie CJ, Plevin R, Lutz EM (2008) PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem 104:74–88

    PubMed  CAS  Google Scholar 

  • Racz B, Gallyas F Jr, Kiss P et al (2007) Effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the PKA-Bad-14-3-3 signaling pathway in glutamate-induced retinal injury in neonatal rats. Neurotox Res 12:95–104

    Article  PubMed  CAS  Google Scholar 

  • Sheward WJ, Lutz EM, Copp AJ, Harmar AJ (1998) Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Brain Res Dev Brain Res 109:245–253

    Article  PubMed  CAS  Google Scholar 

  • Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci U S A 88:3671–3675

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Stork PJ, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296:1648–1649

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  PubMed  CAS  Google Scholar 

  • Verburg J, Hollenbeck PJ (2008) Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J Neurosci 28:8306–8315

    Article  PubMed  CAS  Google Scholar 

  • Waschek JA, Casillas RA, Nguyen TB, Dicicco-Bloom EM, Carpenter EM, Rodriguez WI (1998) Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: potential role in patterning and neurogenesis. Proc Natl Acad Sci U S A 95:9602–9607

    Article  PubMed  CAS  Google Scholar 

  • Watanabe J, Nakamachi T, Matsuno R et al (2007) Localization, characterization and function of pituitary adenylate cyclase-activating polypeptide during brain development. Peptides 28:1713–1719

    Article  PubMed  CAS  Google Scholar 

  • Zhou CJ, Shioda S, Shibanuma M et al (1999) Pituitary adenylate cyclase-activating polypeptide receptors during development: expression in the rat embryo at primitive streak stage. Neurosci 93:375–391

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Young Scientists (B) (22790256) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT, Japan). We wish to thank Drs. Takashi Kurihara and Kazuhiko Inoue for the helpful discussions and the Joint Research Laboratory (Kagoshima University Graduate School of Medical and Dental Sciences) for the use of facilities and equipment.

Conflicts of Interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuro Miyata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kambe, Y., Miyata, A. Role of Mitochondrial Activation in PACAP Dependent Neurite Outgrowth. J Mol Neurosci 48, 550–557 (2012). https://doi.org/10.1007/s12031-012-9754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9754-0

Keywords

Navigation