Skip to main content

Advertisement

Log in

Regulation of IL-1β-Induced Cyclooxygenase-2 Expression by Interactions of Aβ Peptide, Apolipoprotein E and Nitric Oxide in Human Neuroglioma

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer disease (AD) is characterized by chronic neuroinflammation, which may lead to dysfunction in neuronal circuits. Although reactive microglia are found in association with accumulation of beta amyloid (Aβ) plaques in the AD brain, their contribution to neuronal cell loss remains speculative. A major genetic risk factor for sporadic AD is inheritance of the apolipoprotein (apo) E4 allele, which has been shown to contribute significantly to neurodegeneration in AD. Many studies have documented the ability of Aβ fibrils in vitro to induce microglia to undergo phenotypic activation, which results in the secretion and/or expression of a plethora of free radicals and pro-inflammatory mediators. These mediators, such as reactive nitrogen/oxygen species and IL-1β as well as cyclooxygenase-2 (COX-2) with associated prostaglandin E2 (PGE2), are believed to be neurotoxic and to contribute to the underlying cause of AD. We have used the human H4 neuroglioma cells as a model astroglial system to examine the interactions between IL-1β and nitric oxide (NO) as co-stimulators of Aβ1–40 in enhancing the expression of COX-2 and production of PGE2 in the presence of recombinant human apolipoprotein E4 (apoE4). Neither Aβ1–40 nor its reverse sequence analog Aβ40–1 alone had a significant effect on COX-2 expression and PGE2 production in the cells. In contrast, after co-incubation with apoE4, Aβ1–40 increased IL-1β-induced COX-2 expression and PGE2 production. Aβ12–28, which binds with high affinity to apoE4, blocked apoE4-mediated effects on Aβ1–40. Furthermore, (±)-S-Nitroso-N-acetylpenicillamine (SNAP), an agent that releases nitric oxide (NO) in situ, alone did not affect IL-1β-induced COX-2 expression, but increased PGE2 production only. Addition of Aβ1–40 preincubated with apoE4 to H4 cells in the presence of SNAP led to an additive IL-1β-induced COX-2 expression and PGE2 production. These observations indicate that increased PGE2 resulted from increased nitrosative stress, which is enhanced by apoE4. Thus a molecular understanding of the interactions of apoE4 with Aβ, NO and IL-1β on the regulation of the COX-2/prostaglandin pathway may open new avenues in understanding the mechanism of development of neurodegenerative disease such as AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balboa MA, Balsinde J, Dennis EA (2001) Inflammatory activation of prostaglandin production by microglial cells antagonized by amyloid peptide. Biochem Biophys Res Commun 280:558–560

    Article  PubMed  CAS  Google Scholar 

  • Bazan NG (2001) (2001) COX-2 as a multifunctional neuronal modulator. Nat Med 7(4):414–415

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS (1994) Peroxynitrite versus hydroxyl radical: the role of nitric oxide in superoxide-dependent cerebral injury. Ann N Y Acad Sci 17:69–75

    Google Scholar 

  • Breitner JC (1996) Inflammatory processes and antiinflammatory drugs in Alzheimer’s disease: a current appraisal. Neurobiol Aging 17:789–794

    Article  PubMed  CAS  Google Scholar 

  • Buchet R, Tavitian E, Ristig D, Swoboda R, Stauss U, Gremlich HU, de La Fournière L, Staufenbiel M, Frey P, Lowe DA (1996) Conformations of synthetic beta peptides in solid state and in aqueous solution: relation to toxicity in PC12 cells. Biochim Biophys Acta 1315(1):40–46

    PubMed  Google Scholar 

  • Butterfield DA, Castegna A, Lauderback CM, Drake J (2002a) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664

    Article  PubMed  Google Scholar 

  • Butterfield DA, Griffin S, Munch G, Pasinetti GM (2002b) Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. J Alzheimers Dis 4(3):193–201

    PubMed  CAS  Google Scholar 

  • Buttini M, Akeefe H, Lin C, Mahley RW, Pitas RE, Wyss-Coray T, Mucke (2000) Dominant negative effects of apolipoprotein E4 revealed in transgenic models of neurodegenerative disease. Neuroscience 97(2):207–210

    Article  PubMed  CAS  Google Scholar 

  • Cacabelos R, Alvarez XA, Fernández-Novoa L, Franco A, Mangues R, Pellicer A, Nishimura T (1994) Brain interleukin-1 beta in Alzheimer’s disease and vascular dementia. Methods Find Exp Clin Pharmacol 16(2):141–151

    PubMed  CAS  Google Scholar 

  • Carter DB (2005) The interaction of amyloid-beta with ApoE. Subcell Biochem 38:255–272

    Article  PubMed  CAS  Google Scholar 

  • Chalmers K, Wilcock GK, Love S (2003) APOE epsilon 4 influences the pathological phenotype of Alzheimer’s disease by favouring cerebrovascular over parenchymal accumulation of A beta protein. Neuropathol Appl Neurobiol 29(3):231–238

    Article  PubMed  CAS  Google Scholar 

  • Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9(7):907–913

    Google Scholar 

  • Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118(12):4002–4013

    Article  PubMed  CAS  Google Scholar 

  • Devaux Y, Seguin C, Grosjean S, Talance N, Camaeti V, Burlet A, Zannad F, Meistelman C, Mertes PM, Longrois D (2001) Lipopolysaccharide-induced increase of prostaglandin E(2) is mediated by inducible nitric oxide synthase activation of the constitutive cyclooxygenase and induction of membrane-associated prostaglandin E synthase. J Immunol 167:3962–3971

    PubMed  CAS  Google Scholar 

  • Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981

    Article  PubMed  Google Scholar 

  • Floden AM, Li S, Combs CK (2005) Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci 25(10):2566–2275

    Article  PubMed  CAS  Google Scholar 

  • Golabek AA, Soto C, Vogel T, Wisniewski T (1996) The interaction between apolipoprotein E and Alzheimer’s amyloid β-peptide is dependent on-peptide conformation. J Biol Chem 271:10602–10606

    Article  PubMed  CAS  Google Scholar 

  • Guastadisegni C, Minghetti L, Nicolini A, Polazzi E, Ade P, Balduzzi M, Levi G (1997) Prostaglandin E2 synthesis is differentially affected by reactive nitrogen intermediates in cultured rat microglia and RAW 264.7 cells. FEBS Lett 413:314–318

    Article  PubMed  CAS  Google Scholar 

  • Ho L, Purohit D, Haroutunian V, Luterman JD, Willis F, Naslund J, Buxbaum JD, Mohs RC, Aisen PS, Pasinetti GM (2001) Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch Neurol 58(3):487–892

    Article  PubMed  CAS  Google Scholar 

  • Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 97(6):2892–2897

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Akama KT, Krafft GA, Chromy BA, Van Eldik LJ (1998) Amyloid-beta peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res 785:195–206

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Weisgraber KH, Mucke L, Mahley RW (2004) Apolipoprotein E: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer’s disease. J Mol Neurosci 23(3):89–204

    Article  Google Scholar 

  • Iadecola C (2003) Cerebrovascular effects of amyloid-beta peptides: mechanisms and implications for Alzheimer’s dementia. Cell Mol Neurobiol 23(4–5):681–689

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360

    Article  PubMed  CAS  Google Scholar 

  • Igwe OJ, Murray JM, Moolwaney AS (2001) Interleukin 1-induced cyclooxygenase and nitric oxide synthase gene expression in the rat dorsal root ganglia is modulated by antioxidants. Neuroscience 105:971–985

    Article  PubMed  CAS  Google Scholar 

  • Irizarry MC, Cheung BS, Rebeck GW, Paul SM, Bales KR, Hyman BT (2000) Apolipoprotein E affects the amount, form, and anatomical distribution of amyloid beta-peptide deposition in homozygous APP(V717F) transgenic mice. Acta Neuropathol 100(5):451–458

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Permanne B, Sigurdsson EM, Holtzman DM, Wisniewski T (2001) Amyloid beta40/42 clearance across the blood-brain barrier following intra-ventricular injections in wild-type, apoE knock-out and human apoE3 or E4 expressing transgenic mice. J Alzheimers Dis 3(1):23–30

    PubMed  CAS  Google Scholar 

  • Ji ZS, Miranda RD, Newhouse YM, Weisgraber KH, Huang Y, Mahley RW (2002) Apolipoprotein E4 potentiates amyloid beta peptide-induced lysosomal leakage and apoptosis in neuronal cells. J Biol Chem 277(24):21821–21828

    Article  PubMed  CAS  Google Scholar 

  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842

    Article  PubMed  CAS  Google Scholar 

  • Kotilinek LA, Westerman MA, Wang Q, Panizzon K, Lim GP, Simonyi A, Lesne S, Falinska A, Younkin LH, Younkin SG, Rowan M, Cleary J, Wallis RA, Sun GY, Cole G, Frautschy S, Anwyl R, Ashe KH (2008) Cyclooxygenase-2 inhibition improves amyloid-beta-mediated suppression of memory and synaptic plasticity. Brain 131(Pt 3):651–664

    Article  PubMed  Google Scholar 

  • LaDu MJ, Falduto MT, Manelli AM, Reardon CA, Getz GS, Frail DE (1994) Isoform-specific binding of apolipoprotein E to beta-amyloid. J Biol Chem 269(38):23403–23406

    PubMed  CAS  Google Scholar 

  • LaDu MJ, Pederson TM, Frail DE, Reardon CA, Getz GS, Falduto MT (1995) Purification of apolipoprotein E attenuates isoform-specific binding to beta-amyloid. J Biol Chem 270(16):9039–9042

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Brewer BH, Potter H, Brewer HB Jr (1996) Alzheimer Aβ neurotoxicity: promotion by antichymotrypsin, apoE4; inhibition by Aβ-related peptides. Neurobiol Aging 17:773–780

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, Putti S, Finazzi Agro A (1997) Nitric oxide donors activate the cyclooxygenase and peroxidase activities of prostaglandin H synthase. FEBS Lett 410:470–476

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie IR, Munoz DG (1998) Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology 50:986–990

    Article  PubMed  CAS  Google Scholar 

  • Mahley RW, Huang Y (1999) Apolipoprotein E: from atherosclerosis to Alzheimer’s disease and beyond. Curr Opin Lipidol 10(3):207–217

    Article  PubMed  CAS  Google Scholar 

  • Mahley RW, Huang Y (2009) Alzheimer disease: multiple causes, multiple effects of apolipoprotein E4, and multiple therapeutic approaches. Ann Neurol 65(6):623–625

    Article  PubMed  Google Scholar 

  • Mahley RW, Weisgraber KH, Huang Y (2006) Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci U S A 103(15):5644–5651

    Article  PubMed  CAS  Google Scholar 

  • Manabe Y, Anrather J, Kawano T, Niwa K, Zhou P, Ross ME, Iadecola C (2004) Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann Neurol 55(5):668–675

    Article  PubMed  CAS  Google Scholar 

  • Même W, Calvo CF, Froger N, Ezan P, Amigou E, Koulakoff A, Giaume C (2006) Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid. FASEB J 20(3):494–496

    PubMed  Google Scholar 

  • Minghetti L, Polazzi E, Nicolini A, Creminon C, Levi G (1996) Interferon-gamma and nitric oxide down-regulate lipopolysaccharide-induced prostanoid production in cultured rat microglial cells by inhibiting cyclooxygenase-2 expression. J Neurochem 66:1963–1970

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado F, Lledo A, Guaza C (1995) Evidence for cyclooxygenase activation by nitric oxide in astrocytes. Glia 15:167–172

    Article  PubMed  CAS  Google Scholar 

  • Montine TJ, Sidell KR, Crews BC, Markesbery WR, Marnett LJ, Roberts LJ 2nd, Morrow JD (1999) Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology 53(7):1495–1498

    Article  PubMed  CAS  Google Scholar 

  • Moolwaney AS, Igwe OJ (2005) Regulation of the cyclooxygenase-2 system by interleukin-1beta through mitogen-activated protein kinase signaling pathways: a comparative study of human neuroglioma and neuroblastoma cells. Brain Res 137(1–2):202–212

    CAS  Google Scholar 

  • Mrak RE, Sheng JG, Griffin WS (1995) Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Human Pathol 26:816–823

    Article  CAS  Google Scholar 

  • Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, Reis DJ, Minc-Golomb D, Schwartz JP (1993) Synthesis of nitric oxide in CNS glial cells. Trends Neurosci 16:323–328

    Article  PubMed  CAS  Google Scholar 

  • Niwa K, Carlson GA, Iadecola C (2000) Exogenous A beta1-40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice. J Cereb Blood Flow Metab 20(12):1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Parks JK, Smith TS, Trimmer PA, Bennett JP Jr, Parker WD Jr (2001) Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 76(4):1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Paulson JB, Ramsden M, Forster C, Sherman MA, McGowan E, Ashe KH (2008) Amyloid plaque and neurofibrillary tangle pathology in a regulatable mouse model of Alzheimer’s disease. Am J Pathol 173(3):762–772

    Article  PubMed  CAS  Google Scholar 

  • Perkins DJ, Kniss DA (1999) Blockade of nitric oxide formation down-regulates cyclooxygenase-2 and decreases PGE2 biosynthesis in macrophages. J Leukoc Biol 65:792–799

    PubMed  CAS  Google Scholar 

  • Puzzo D, Palmeri A, Arancio O (2006) Involvement of the nitric oxide pathway in synaptic dysfunction following amyloid elevation in Alzheimer’s disease. Rev Neurosci 17(5):497–523

    Article  PubMed  CAS  Google Scholar 

  • Raber J, Wong D, Yu GQ, Buttini M, Mahley RW, Pitas RE, Mucke L (2000) Apolipoprotein E and cognitive performance. Nature 404(6776):352–354

    Article  PubMed  CAS  Google Scholar 

  • Rothwell NJ (1991) Functions and mechanisms of interleukin 1 in the brain. Trends Pharmacol Sci 12:430–436

    Article  PubMed  CAS  Google Scholar 

  • Sadowski M, Pankiewicz J, Scholtzova H, Ripellino JA, Li Y, Schmidt SD, Mathews PM, Fryer JD, Holtzman DM, Sigurdsson EM, Wisniewski T (2004) A synthetic peptide blocking the apolipoprotein E/beta-amyloid binding mitigates beta-amyloid toxicity and fibril formation in vitro and reduces beta-amyloid plaques in transgenic mice. Am J Pathol 165(3):937–948

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17(8):2653–2637

    PubMed  CAS  Google Scholar 

  • Stine WB, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid- peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Weisgraber KH, Huang D, Dong LM, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD (1993) Binding of human apolipoprotein E to synthetic amyloid peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 90:8098–8102

    Article  PubMed  CAS  Google Scholar 

  • Sutton ET, Thomas T, Bryant MW, Landon CS, Newton CA, Rhodin JA (1999) Amyloid-beta peptide induced inflammatory reaction is mediated by the cytokines tumor necrosis factor and interleukin-1. J Submicrosc Cytol Pathol 31(3):313–323

    PubMed  CAS  Google Scholar 

  • Tetsuka T, Baier LD, Morrison AR (1996) Antioxidants inhibit interleukin-1-induced cyclooxygenase and nitric-oxide synthase expression in rat mesangial cells. Evidence for post-transcriptional regulation. J Biol Chem 271(20):11689–11693

    Article  PubMed  CAS  Google Scholar 

  • Vidwans AS, Uliasz TF, Hewett JA, Hewett SJ (2001) Differential modulation of prostaglandin H synthase-2 by nitric oxide-related species in intact cells. Biochemistry 40:11533–11542

    Article  PubMed  CAS  Google Scholar 

  • Watkins DN, Garlepp MJ, Thompson PJ (1997) Regulation of the inducible cyclo-oxygenase pathway in human cultured airway epithelial (A549) cells by nitric oxide. Br J Pharmacol 121:1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Weisgraber KH, Newhouse YM, Mahley RW (1988) Apolipoprotein E genotyping using the polymerase chain reaction and allele-specific oligonucleotide probes. Biochem Biophys Res Commun 157(3):1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski T, Castaño EM, Golabek AA, Vogel T, Frangione B, Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 145:1030–1035

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Bing RJ (2000) Nitric oxide donors. Proc Soc Exp Biol Med 225(3):200–206

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Chen C (2008) Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des 14(14):1443–1451

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Ji Y, Mehta P, Bates KA, Sun Y, Wisniewski T (2011) Blocking the apolipoprotein E/amyloid-β interaction reduces fibrillar vascular amyloid deposition and cerebral microhemorrhages in TgSwDI mice. J Alzheimers Dis 24(2):269–285

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The University of Missouri Research Board (UMRB) grant to OJI supported this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orisa J. Igwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samy, A.S., Igwe, O.J. Regulation of IL-1β-Induced Cyclooxygenase-2 Expression by Interactions of Aβ Peptide, Apolipoprotein E and Nitric Oxide in Human Neuroglioma. J Mol Neurosci 47, 533–545 (2012). https://doi.org/10.1007/s12031-011-9670-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9670-8

Keywords

Navigation