Skip to main content

Advertisement

Log in

Promoter Methylation and Tissue-Specific Transcription of the α7 Nicotinic Receptor Gene, CHRNA7

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The α7 nicotinic acetylcholine receptor is known to regulate a wide variety of developmental and secretory functions in neural and non-neural tissues. The mechanisms that regulate its transcription in these varied tissues are not well understood. Epigenetic processes may play a role in the tissue-specific regulation of mRNA expression from the α7 nicotinic receptor subunit gene, CHRNA7. Promoter methylation was correlated with CHRNA7 mRNA expression in various tissue types and the role of DNA methylation in regulating transcription from the gene was tested by using DNA methyltransferase (DNMT1) inhibitors and methyl donors. CHRNA7 mRNA expression was silenced in SH-EP1 cells and bisulfite sequencing PCR revealed the CHRNA7 proximal promoter was hypermethylated. The proximal promoter was hypomethylated in the cell lines HeLa, SH-SY5Y, and SK-N-BE which express varying levels of CHRNA7 mRNA. Expression of CHRNA7 mRNA was present in SH-EP1 cells after treatment with the methylation inhibitor, 5-aza-2-deoxycytidine (5-Aza-CdR), and increased in SH-EP1 and HeLa cells using another methylation inhibitor, zebularine (ZEB). Transcription from the CHRNA7 promoter in HeLa cells was increased when the methyl donor methionine (MET) was absent from the media. Using methylation-sensitive restriction enzyme analysis (MSRE), there was a strong inverse correlation between CHRNA7 mRNA levels and promoter DNA methylation across several human tissue types. The results support a role for DNA methylation of the proximal promoter in regulation of CHRNA7 transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α7nACHR:

α7 neuronal nicotinic acetylcholine receptor

CHRNA7 :

Human α7 neuronal nicotinic acetylcholine receptor subunit gene

5-Aza-CdR:

5-Aza-2-deoxycytidine

ZEB:

Zebularine

BSP:

Sodium-bisulfite DNA modification coupled with PCR and sequencing

MSRE:

Methylation-sensitive restriction enzyme analysis

PNMT:

Phosphotidylethanolamine N-methyltransferase gene

RELN :

Human reelin gene

GAD1 :

Human glutamate decarboxylase 1 gene

DNMT1 :

DNA methyltransferase 1

References

  • Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, Shafa R, Glatt SJ, Nguyen G, Ponte JF, Thiagalingam S, Tsuang MT (2005) Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet Part B 134B:60–66

    Article  PubMed  Google Scholar 

  • Adams CE (2003) Comparison of alpha 7 nicotinic acetylcholine receptor development in the hippocampal formation of C3H and DBA/2 mice. Dev Brain Res 143:137–149

    Article  CAS  Google Scholar 

  • Adams CE, Broide RS, Chen YL, Winzer-Serhan UH, Henderson TA, Leslie FM, Freedman R (2002) Development of the alpha 7 nicotinic cholinergic receptor in rat hippocampal formation. Dev Brain Res 139:175–187

    Article  CAS  Google Scholar 

  • Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    Article  PubMed  CAS  Google Scholar 

  • Antequera F (2003) Structure, function and evolution of CpG island promoters. Cell Mol Life Sci 60:1647–1658

    Article  PubMed  CAS  Google Scholar 

  • Aramakis VB, Metherate R (1998) Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J Neurosci 18:8485–8495

    PubMed  CAS  Google Scholar 

  • Araud T, Graw S, Berger R, Neveu E, Bertrand D, Leonard S (2011) The duplicated alpha 7 nicotinic receptor gene CHRFAM7A is a dominant negative regulator of CHRNA7 expression. Biochem Pharmacol 82:904–914

    Article  PubMed  CAS  Google Scholar 

  • Arredondo J, Nguyen VT, Chernyavsky AI, Jolkovsky DL, Pinkerton KE, Grando SA (2001) A receptor-mediated mechanism of nicotine toxicity in oral keratinocytes. Lab Invest 81:1653–1668

    Article  PubMed  CAS  Google Scholar 

  • Bali P, Im H-I, Kenny PJ (2011) Methylation, memory and addiction. Epigenetics 6:671–674

    Article  PubMed  CAS  Google Scholar 

  • Belinsky SA, Palmisano WA, Gilliland FD, Crooks LA, Divine KK, Winters SA, Grimes MJ, Harms HJ, Tellez CS, Smith TM, Moots PP, Lechner JF, Stidley CA, Crowell RE (2002) Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res 62:2370–2377

    PubMed  CAS  Google Scholar 

  • Bestor TH (1992) Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J 11:2611–2617

    PubMed  CAS  Google Scholar 

  • Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38:3751–3757

    PubMed  CAS  Google Scholar 

  • Breese CR, Lee MJ, Adams CE, Sullivan B, Logel J, Gillen KM, Marks MJ, Collins AC, Leonard S (2000) Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacol 23:351–364

    Article  CAS  Google Scholar 

  • Campos-Caro A, Carrasco-Serrano C, Valor LM, Ballesta JJ, Criado M (2001) Activity of the nicotinic acetylcholine receptor alpha5 and alpha7 subunit promoters in muscle cells. DNA Cell Biol 20:657–666

    Article  PubMed  CAS  Google Scholar 

  • Carrasco-Serrano C, Criado M (2004) Glucocorticoid activation of the neuronal nicotinic acetylcholine receptor alpha7 subunit gene: involvement of transcription factor Egr-1. FEBS Lett 566:247–250

    Article  PubMed  CAS  Google Scholar 

  • Carrasco-Serrano C, Campos-Caro A, Viniegra S, Ballesta JJ, Criado M (1998) GC- and E-box motifs as regulatory elements in the proximal promoter region of the neuronal nicotinic receptor alpha7 subunit gene. J Biol Chem 273:20021–20028

    Article  PubMed  CAS  Google Scholar 

  • Catone C, Ternaux JP (2003) Involvement of the alpha 7 subunit of the nicotinic receptor in morphogenic and trophic effects of acetylcholine on embryonic rat spinal motoneurons in culture. J Neurosci Res 72:46–53

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Quik M (1993) A role for the nicotinic alpha-bungarotoxin receptor in neurite outgrowth in PC12 cells. Neurosci 56:441–451

    Article  CAS  Google Scholar 

  • Chernyavsky AI, Arredondo J, Marublo LM, Grando SA (2004) Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. J Cell Sci 117:5665–5679

    Article  PubMed  CAS  Google Scholar 

  • Couturier S, Bertrand D, Matter J-M, Hernandez M-C, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990) A neuronal nicotinic acetylcholine receptor subunit α7 is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 5:847–856

    Article  PubMed  CAS  Google Scholar 

  • Criado M, del Dominguez TE, Carrasco-Serrano C, Smillie FI, Juiz JM, Viniegra S, Ballesta JJ (1997) Differential expression of alpha-bungarotoxin-sensitive neuronal nicotinic receptors in adrenergic chromaffin cells: a role for transcription factor Egr-1. J Neurosci 17:6554–6564

    PubMed  CAS  Google Scholar 

  • Dajas-Bailador FA, Lima PA, Wonnacott S (2000) The alpha 7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca2+ dependent mechanism. Neuropharmacol 39:2799–2807

    Article  CAS  Google Scholar 

  • De Rosa MJ, Esandi MD, Garelli A, Rayes D, Bouzat C (2005) Relationship between alpha 7 nAChR and apoptosis in human lymphocytes. J Neuroimmunol 160:154–161

    Article  PubMed  Google Scholar 

  • Dickinson JA, Kew JNC, Wonnacott S (2008) Presynaptic alpha 7- and beta 2-containing nicotinic acetylcholine receptors modulate excitatory amino acid release from rat prefrontal cortex nerve terminals via distinct cellular mechanisms. Mol Pharmacol 74:348–359

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genet 38:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Fayuk D, Yakel JL (2005) Ca2+ permeability in rat hippocampal of nicotinic acetylcholine receptors CA1 interneurones. J Physiol 566:759–768

    Article  PubMed  CAS  Google Scholar 

  • Feng JA, Fouse S, Fan GP (2007) Epigenetic regulation of neural gene expression and neuronal function. Ped Res 61:58R–63R

    Article  CAS  Google Scholar 

  • Fischer U, Reinhardt S, Albuquerque EX, Maelicke A (1999) Expression of functional alpha7 nicotinic acetylcholine receptor during mammalian muscle development and denervation. Eur J Neurosc 11:2856–2864

    Article  CAS  Google Scholar 

  • Frankenburg FR (2007) The role of one-carbon metabolism in schizophrenia and depression. Harvard Rev Psychiatry 15:146–160

    Article  Google Scholar 

  • Fucile S, Sucapane A, Eusebi F (2005) Ca2+ permeability of nicotinic acetylcholine receptors from rat dorsal root ganglion neurones. J Physiol 565:219–228

    Article  PubMed  CAS  Google Scholar 

  • Gahring LC, Rogers SW (2005) Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells. AAPS J 7:E885–E894

    Article  CAS  Google Scholar 

  • Gault J, Robinson M, Berger R, Drebing C, Logel J, Hopkins J, Moore T, Jacobs S, Meriwether J, Choi MJ, Kim EJ, Walton K, Buiting K, Davis A, Breese C, Freedman R, Leonard S (1998) Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 52:173–185

    Article  PubMed  CAS  Google Scholar 

  • Grayson DR, Jia XM, Chen Y, Sharma RP, Mitchell CP, Guidotti A, Costa E (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A 102:9341–9346

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Kokubun S, Itoi E, Roach HI (2007) Improved quantification of DNA methylation using methylation-sensitive restriction enzymes and real-time PCR. Epigenetics 2:86–91

    Article  PubMed  Google Scholar 

  • Heeschen C, Weis M, Aicher A, Dimmeler S, Cooke JP (2002) A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest 110:527–536

    PubMed  CAS  Google Scholar 

  • Huang HS, Akbarian S (2007) GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS One 2:e809

    Article  PubMed  Google Scholar 

  • Jones PA (1985) Effects of 5-azacytidine and its 2'-deoxyderivative on cell-differentiation and DNA methylation. Pharmacol Ther 28:17–27

    Article  PubMed  CAS  Google Scholar 

  • Jones IW, Wonnacott S (2004) Precise localization of alpha 7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J Neurosci 24:11244–11252

    Article  PubMed  CAS  Google Scholar 

  • Kaiser S, Wonnacott S (2000) alpha-Bungarotoxin-sensitive nicotinic receptors indirectly modulate [H-3]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58:312–318

    PubMed  CAS  Google Scholar 

  • Kempkensteffen C, Christoph F, Weikert S, Krause H, Kollermann J, Schostak M, Miller K, Schrader M (2006) Epigenetic silencing of the putative tumor suppressor gene testisin in testicular germ cell tumors. J Cancer Res Clin Oncol 132:765–770

    Article  PubMed  CAS  Google Scholar 

  • Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaike A (2001) alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block a beta-amyloid-induced neurotoxicity. J Biol Chem 276:13541–13546

    PubMed  CAS  Google Scholar 

  • Koike K, Hashimoto K, Okamura N, Ohgake S, Shimizu E, Koizumi H, Komatsu N, Iyo M (2004) Decreased cell proliferation in the dentate gyrus of alpha 7 nicotinic acetylcholine receptor heterozygous mice. Prog Neuropsychopharmacol Biol Psychiatry 28:517–520

    Article  PubMed  CAS  Google Scholar 

  • Leonard S, Logel J, Luthman D, Casanova M, Kirch D, Freedman R (1993) Biological stability of mRNA isolated from human postmortem brain collections. Biol Psychiatry 33:456–466

    Article  PubMed  CAS  Google Scholar 

  • Leonard S, Adler LE, Benhammou K, Berger R, Breese CR, Drebing C, Gault J, Lee MJ, Logel J, Olincy A, Ross RG, Stevens K, Sullivan B, Vianzon R, Vernich DE, Waldo M, Walton K, Freedman R (2001) Smoking and mental illness. Pharmacol Biochem Behav 70:561–570

    Article  PubMed  CAS  Google Scholar 

  • Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, Drebing C, Berger R, Venn D, Sirota P, Zerbe G, Olincy A, Ross RG, Adler LE, Freedman R (2002) Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry 59:1085–1096

    Article  PubMed  CAS  Google Scholar 

  • Li S, Zhao TJ, Xin H, Ye LH, Zhang XD, Tanaka H, Nakamura A, Kohama K (2004) Nicotinic acetylcholine receptor alpha 7 subunit mediates migration of vascular smooth muscle cells toward nicotine. J Pharmacol Sci 94:334–338

    Article  PubMed  CAS  Google Scholar 

  • Lopez MG, Montiel C, Herrero CJ, Garcia-Palomero E, Mayorgas I, Hernandez-Guijo JM, Villarroya M, Olivares R, Gandia L, McIntosh JM, Olivera BM, Garcia AG (1998) Unmasking the functions of the chromaffin cell alpha(7) nicotinic receptor by using short pulses of acetylcholine and selective blockers. Proc Natl Acad Sci U S A 95:14184–14189

    Article  PubMed  CAS  Google Scholar 

  • Mai HQ, May WS, Gao FQ, Jin ZH, Deng XM (2003) A functional role for nicotine in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem 278:1886–1891

    Article  PubMed  CAS  Google Scholar 

  • Nagavarapu U, Danthi S, Boyd RT (2001) Characterization of a rat neuronal nicotinic acetylcholine receptor alpha7 promoter. J Biol Chem 276:16749–16757

    Article  PubMed  CAS  Google Scholar 

  • Niculescu MD, Zeisel SH (2002) Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutrition 132:2333S–2335S

    CAS  Google Scholar 

  • Nijhout HF, Reed MC, Anderson DF, Mattingly JC, James SJ, Ulrich CM (2006) Long-range allosteric interactions between the folate and methionine cycles stabilize DNA methylation reaction rate. Epigenetics 1:81–87

    Article  PubMed  Google Scholar 

  • Park HJ, Lee PH, Ahn YW, Choi YJ, Lee G, Lee DY, Chung ES, Jin BK (2007) Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. Eur J Neurosci 26:79–89

    Article  PubMed  Google Scholar 

  • Paulsen M, Ferguson-Smith AC (2001) DNA methylation in genomic imprinting, development, and disease. J Pathol 195:97–110

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucl Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  • Plummer HK, Sheppard BJ, Schuller HM (2000) Interaction of tobacco-specific toxicants with nicotinic cholinergic regulation of fetal pulmonary neuroendocrine cells: implications for pediatric lung disease. Exper Lung Res 26:121–135

    Article  CAS  Google Scholar 

  • Pugh PC, Berg DK (1994) Neuronal acetylcholine-receptors that bind alpha-bungarotoxin mediate neurite retraction in a calcium-dependent manner. J Neurosci 14:889–896

    PubMed  CAS  Google Scholar 

  • Qian XLC, Brent TP (1997) Methylation hot spots in the 5' flanking region denote silencing of the O-6-methylguanine-DNA methyltransferase gene. Cancer Res 57:3672–3677

    PubMed  CAS  Google Scholar 

  • Reynolds PR, Hoidal JR (2005) Temporal–spatial expression and transcriptional regulation of alpha7 nicotinic acetylcholine receptor by thyroid transcription factor-1 and early growth response factor-1 during murine lung development. J Biol Chem 280:32548–32554

    Article  PubMed  CAS  Google Scholar 

  • Schilstrom B, Fagerquist MV, Zhang X, Hertel P, Panagis G, Nomikos GG, Svensson TH (2000) Putative role of presynaptic alpha 7*nicotinic receptors in nicotine stimulated increases of extracellular levels of glutamate and aspartate in the ventral tegmental area. Synapse 38:375–383

    Article  PubMed  CAS  Google Scholar 

  • Seguela P, Wadiche J, Dineleymiller K, Dani JA, Patrick JW (1993) Molecular-cloning, functional-properties, and distribution of rat brain-alpha-7—a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  CAS  Google Scholar 

  • Sharma G, Grybko M, Vijayaraghavan S (2008) Action potential-independent and nicotinic receptor-mediated concerted release of multiple quanta at hippocampal CA3-mossy fiber synapses. J Neurosc 28:2563–2575

    Article  CAS  Google Scholar 

  • Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S, Shu J, Chen X, Waterland RA, Issa JPJ (2007) Genome-wide profiling reveals a class of normally methylated CpG island promoters. Plos Genet 3:2023–2036

    Article  PubMed  CAS  Google Scholar 

  • Si ML, Lee TJF (2001) Presynaptic alpha(7)-nicotinic acetylcholine receptors mediate nicotine-induced nitric oxidergic neurogenic vasodilation in porcine basilar arteries. J Pharmacol Exper Therapeut 298:122–128

    CAS  Google Scholar 

  • Skok M, Grailhe R, Agenes F, Changeux JP (2006) The role of nicotinic acetylcholine receptors in lymphocyte development. J Neuroimmunol 171:86–98

    Article  PubMed  CAS  Google Scholar 

  • Son JH, Meizel S (2003) Evidence suggesting that the mouse sperm acrosome reaction initiated by the zona pellucida involves an alpha 7 nicotinic acetylcholine receptor. Biol Reprod 68:1348–1353

    Article  PubMed  CAS  Google Scholar 

  • Stephens SH, Logel J, Barton A, Franks A, Schultz J, Short M, Dickenson J, James B, Fingerlin T, Wagner B, Hodgkinson CA, Graw S, Ross RG, Freedman R, Leonard S (2009) Association of the 5'-upstream regulatory region of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia. Schizo Res 109:102–112

    Article  Google Scholar 

  • Suzuki M, Sato S, Arai Y, Shinohara T, Tanaka S, Greally JM, Hattori N, Shiota K (2007) A new class of tissue-specifically methylated regions involving entire CpG islands in the mouse. Genes Cells 12:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99:3740–3745

    Article  PubMed  CAS  Google Scholar 

  • Tregellas JR, Tanabe J, Rojas DC, Shatti S, Olincy A, Johnson L, Martin LF, Soti F, Kem WR, Leonard S, Freedman R (2010) Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol Psychiatry 69:7–11

    Article  PubMed  Google Scholar 

  • Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P, Sharma R, Grayson DR, Costa E, Guidotti A (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci U S A 99:17095–17100

    Article  PubMed  CAS  Google Scholar 

  • Vincent A, Jacobson L, Plested P, Polizzi A, Tang T, Riemersma S, Newland C, Ghorazian S, Farrar J, MacLennan C, Willcox N, Beeson D, Newsom-Davis J (1998) Antibodies affecting ion channel function in acquired neuromyotonia, in seropositive and seronegative myasthenia gravis, and in antibody-mediated arthrogryposis multiplex congenita. Ann NY Acad Sci 841:482–496

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang HC, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha 7 subunit is an essential regulator of inflammation. Nature 421:384–388

    Article  PubMed  CAS  Google Scholar 

  • Wei PL, Chang YJ, Ho YS, Lee CH, Yang YY, An J, Lin SY (2009) Tobacco-specific carcinogen enhances colon cancer cell migration through alpha 7-nicotinic acetylcholine receptor. Ann Surg 249:978–985

    Article  PubMed  Google Scholar 

  • Yagi S, Hirabayashi K, Sato S, Li W, Takahashi Y, Hirakawa T, Wu GY, Hattori N, Hattori N, Ohgane J, Tanaka S, Liu XS, Shiota K (2008) DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) in mouse promoter regions demonstrating tissue-specific gene expression. Genome Res 18:1969–1978

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Blanchard KL (2000) DNA methylation represses the expression of the human erythropoietin gene by two different mechanisms. Blood 95:111–119

    PubMed  CAS  Google Scholar 

  • Zhang JM, Berg DK (2007) Reversible inhibition of GABA(A) receptors by alpha 7-containing nicotinic receptors on the vertebrate postsynaptic neurons. J Physiol 579:753–763

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP (2002) Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol 321:591–599

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grants DA09457, MH081177, the Veterans’ Affairs Medical Research Service to SL, and a T32-MH15442 fellowship and research funds from the Developmental Psychobiology Research Group at UCD to AC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherry Leonard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canastar, A., Logel, J., Graw, S. et al. Promoter Methylation and Tissue-Specific Transcription of the α7 Nicotinic Receptor Gene, CHRNA7 . J Mol Neurosci 47, 389–400 (2012). https://doi.org/10.1007/s12031-011-9663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9663-7

Keywords

Navigation