Skip to main content

Advertisement

Log in

Inflammatory Profile, Age of Onset, and the MTHFR Polymorphism in Patients with Multiple Sclerosis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Both genetic and inflammatory factors are suspected in the etiology of multiple sclerosis (MS). Of genetic factors, the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism has been associated with increased levels of plasma homocysteine, a neuronal excitotoxic amino acid. Sclerotic patients also have elevated levels of plasma and CSF homocysteine. In this study, the association between C677T polymorphism and MS was tested by recruiting 230 healthy and 194 multiple sclerotic age- and gender-matched patients. The MTHFR C677T polymorphism and the serum levels of inflammatory mediators IL-1β, TNFα, and CRP were measured. TNFα, CRP, and IL-1β levels were significantly higher in sclerotic patients. T allele was 1.7 times more present in this group. In patient’s group, the levels of all inflammatory mediators were higher in T/T compared to two other genotypes. Evaluation of the age of onset of disease revealed that subjects with T allele developed the MS disease, almost 4 years sooner than other genotype. We concluded that having T allele of C677T in MS might be accompanied with higher levels of serum inflammatory mediators and a vulnerability to earlier age of onset of disease. Further studies are needed to elucidate the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Bagley PJ, Selhub J (1998) A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci USA 95:13217–13220

    Article  PubMed  CAS  Google Scholar 

  • Baranzini SE, Wang J, Gibson RA et al (2009) Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet 18:767–778

    Article  PubMed  CAS  Google Scholar 

  • Chawla RK, Watson WH, Eastin CE, Lee EY, Schmidt J, Mc Clain CJ (1998) S-adenosylmethionine deficiency and TNF-alpha in lipopolysaccharide-induced hepatic injury. Am J Physiol 275:G125–129

    PubMed  CAS  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517

    Article  PubMed  CAS  Google Scholar 

  • Cornacchia E, Golbus J, Maybaum J, Strahler J, Hanash S, Richardson B (1988) Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. Journal of Immunology 140:2197–2200

    CAS  Google Scholar 

  • Etemadifar M, Janghorbani M, Shaygannejad V, Ashtari F (2006) Prevalence of multiple sclerosis in Isfahan, Iran. Neuroepidemiology 27:39–44

    Article  PubMed  Google Scholar 

  • Ewing C, Bernard CCA (1998) Insights into the aetiology and pathogenesis of multiple sclerosis. Immunol Cell Biol 76:47–54

    Article  PubMed  CAS  Google Scholar 

  • Freedman MS (2006) Disease-modifying drugs for multiple sclerosis current and future aspect. Expert Opin Pharmacother 7:S1–S92

    Article  PubMed  CAS  Google Scholar 

  • Friso S, Choi SW, Girelli D et al (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA 99:5606–5611

    Article  PubMed  CAS  Google Scholar 

  • Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease. A common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni G, Thorpe JW, Kidd D et al (1996) Soluble E-selectin in multiple sclerosis: raised concentrations in patients with primary progressive disease. J Neurol Neurosurg Psychiatry 60:20–26

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni G, Miller DH, Losseff NA et al (2001) Serum inflammatory markers and clinical/MRI markers of disease progression in multiple sclerosis. J Neurol 248:487–495

    Article  PubMed  CAS  Google Scholar 

  • Goyette P, Sumner JS, Milos R et al (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 7:195–200

    Article  PubMed  CAS  Google Scholar 

  • Haines JL, Ter-Minassian M, Bazyk A et al (1996) A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex. Nat Genet 13:469–471

    Article  PubMed  CAS  Google Scholar 

  • Jonasdottir A, Thorlacius T, Fossdal R et al (2003) A whole genome association study in Icelandic multiple sclerosis patients with 4804 markers. J Neuroimmunol 143:88–92

    Article  PubMed  CAS  Google Scholar 

  • Kalanie H, Kamgooyan M, Sadeghian H, Kalanie AR (2000) Histocompatibility antigen association with multiple sclerosis in Iran. Mult Scler 6:317–319

    PubMed  CAS  Google Scholar 

  • Klotz L, Farkas M, Bain N et al (2010) The variant methylenetetrahydrofolate reductase c.1298A>C (p.E429A) is associated with multiple sclerosis in a German case–control study. Neurosci Lett 468:183–185

    Article  PubMed  CAS  Google Scholar 

  • Kohara K, Fujisawa M, Ando F et al (2003) MTHFR gene polymorphism as a risk factor for silent brain infarcts and white matter lesions in the Japanese general population: the NILS-LSA study. Stroke 34:1130–1135

    Article  PubMed  Google Scholar 

  • Lin JJ, Yueh KC, Liu CS, Liu JT, Lin SZ (2007) 5,10-Methylenetetrahydrofolate reductase C677T gene polymorphism can influence age at onset of Parkinson’s disease. Acta Neurol Taiwan 16:150–157

    PubMed  Google Scholar 

  • Mager A, Koren-Morag N, Shohat M, Harell D, Battler A (2005) Family history, plasma homocysteine, and age at onset of symptoms of myocardial ischemia in patients with different methylenetetrahydrofolate reductase genotypes. Am J Cardiol 95:1420–1424

    Article  PubMed  CAS  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  PubMed  CAS  Google Scholar 

  • Purohit V, Abdelmalek MF, Barve S et al (2007) Role of S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: summary of a symposium1, 2, 3, 4. Am J Clin Nutr 86:14–24

    PubMed  CAS  Google Scholar 

  • Ramsaransing GS, Fokkema MR, Teelken A, Arutjunyan AV, Koch M, De Keyser J (2006) Plasma homocysteine levels in multiple sclerosis. J Neurol Neurosurg Psychiatry 77:189–192

    Article  PubMed  CAS  Google Scholar 

  • Rosati G (2001) The prevalence of multiple sclerosis in the world: an update. Neurol Sci 22:117–139

    Article  PubMed  CAS  Google Scholar 

  • Sadovnick AD, Armstrong H, Rice GP et al (1993) A population-based study of multiple sclerosis in twins: update. Ann Neurol 33:281–285

    Article  PubMed  CAS  Google Scholar 

  • Soilu-Hänninen M, Koskinen JO, Laaksonen M, Hänninen A, Lilius EM, Waris M (2005) High sensitivity measurement of CRP and disease progression in multiple sclerosis. Neurology 65:153–155

    Article  PubMed  Google Scholar 

  • Song Z, Barve S, Chen T et al (2003) S-adenosylmethionine (AdoMet) modulates endotoxin stimulated interleukin-10 production in monocytes. Am J Physiol Gastrointest Liver Physiol 284:G949–G955

    PubMed  CAS  Google Scholar 

  • Surtees R, Leonard J, Austin S (1991) Association of demyelination with deficiency of cerebrospinal-fluid S-adenosylmethionine in inborn errors of methyl-transfer pathway. Lancet 338:1550–1554

    Article  PubMed  CAS  Google Scholar 

  • Tajouri L, Martin V, Gasparini C et al (2006) Genetic investigation of methylenetetrahydrofolate reductase (MTHFR) and catechol-O-methyl transferase (COMT) in multiple sclerosis. Brain Res Bull 69:327–331

    Article  PubMed  CAS  Google Scholar 

  • Ueland PM, Hustad S, Schneede J, Refsum H, Vollset SE (2001) Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Weisberg I, Tran P, Christensen B, Sibani S, Rozen R (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64:169–172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a research grant from Endocrinology and Metabolism Research Center of the Tehran University of Medical Sciences. The authors would like to thank the staff of bio-nanotechnology’s laboratory for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Hossein-nezhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alatab, S., Hossein-nezhad, A., Mirzaei, K. et al. Inflammatory Profile, Age of Onset, and the MTHFR Polymorphism in Patients with Multiple Sclerosis. J Mol Neurosci 44, 6–11 (2011). https://doi.org/10.1007/s12031-010-9486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9486-y

Keyword

Navigation