Skip to main content

Advertisement

Log in

Neurotrophic Actions of Bone Marrow Stromal Cells on Primary Culture of Dorsal Root Ganglion Tissues and Neurons

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Application of adult bone marrow stromal cells (BMSCs) provides therapeutic benefits to the treatment of neurological insults. The aim of this study was to explore the potential of nonhematopoietic BMSCs to produce soluble factors and stimulate signaling pathways in neurons that mediate trophic effects. A combination of enzyme-linked immunosorbent assay and two-dimensional gel electrophoresis coupled with mass spectrometry showed that the BMSCs released into the culture medium an array of soluble factors such as nerve growth factor, brain-derived neurotrophic factor, basic fibroblast growth factor, and ciliary neurotrophic factor, which have been shown to exhibit potent neurotrophic effects on neural cells. Immunochemistry, cell viability assay, and quantitative real-time RT-PCR collectively showed that neurite outgrowth and neurogenesis in cultured rat dorsal root ganglion (DRG) explants and neurons were enhanced after they were cocultured with rat BMSCs. Western blot analysis revealed that BMSC-conditioned medium activated phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase and/or phosphoinositide 3-kinase/serine/threonine kinase (PI3K/Akt) in primary culture of rat DRG neurons, which suggested that BMSCs trigger endogenous survival signaling pathways in neurons through their secreted soluble factors. Our data help to elucidate the mechanisms by which BMSCs function as a cell therapy agent in peripheral nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anton ES, Weskamp G, Reichardt LF, Matthew WD (1994) Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sci USA 91:2795–2799

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Chen YS, Hsieh CL, Tsai CC et al (2000) Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin. Biomaterials 21:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li Y, Wang L et al (2001a) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189:49–57

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Sanberg PR, Li Y et al (2001b) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Strok 32:2682–2688

    Article  CAS  Google Scholar 

  • Chen ZY, Chai YF, Cao L, Lu CL, He C (2001c) Glial cell line-derived neurotrophic factor enhances axonal regeneration following sciatic nerve transection in adult rats. Brain Res 902:272–276

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li Y, Wang L, Lu M, Chopp M (2002a) Caspase inhibition by Z-VAD increases the survival of grafted bone marrow cells and improves functional outcome after MCAo in rats. J Neurol Sci 199:17–24

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li Y, Wang L et al (2002b) Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22:275–279

    Article  PubMed  Google Scholar 

  • Chen J, Zhang ZG, Li Y et al (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang XD, Chen G et al (2006a) Study of in vivo differentiation of rat bone marrow stromal cells into Schwann cell-like cells. Microsurgery 26:111–115

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Teng FY, Tang BL (2006b) Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties. Cell Mol Life Sci 63:1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Chopp M, Li Y (2002) Treatment of neural injury with marrow stromal cells. Lancet Neurol 1:92–100

    Article  PubMed  Google Scholar 

  • Coyne TM, Marcus AJ, Woodbury D, Black IB (2006) Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 24:2483–2492

    Article  PubMed  Google Scholar 

  • Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    Article  CAS  PubMed  Google Scholar 

  • Cuevas P, Carceller F, Dujovny M et al (2002) Peripheral nerve regeneration by bone marrow stromal cells. Neurol Res 24:634–638

    Article  PubMed  Google Scholar 

  • Dezawa M, Hoshino M, Nabeshima Y, Ide C (2005) Marrow stromal cells: implications in health and disease in the nervous system. Curr Mol Med 5:723–732

    Article  CAS  PubMed  Google Scholar 

  • Einheber S, Milner TA, Giancotti F, Salzer JL (1993) Axonal regulation of Schwann cell integrin expression suggests a role for alpha 6 beta 4 in myelination. J Cell Biol 123:1223–1236

    Article  CAS  PubMed  Google Scholar 

  • Hetman M, Kanning K, Cavanaugh JE, Xia Z (1999) Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J Biol Chem 274:22569–22580

    Article  CAS  PubMed  Google Scholar 

  • Hou SY, Zhang HY, Quan DP, Liu XL, Zhu JK (2006) Tissue-engineered peripheral nerve grafting by differentiated bone marrow stromal cells. Neuroscience 140:101–110

    Article  CAS  PubMed  Google Scholar 

  • Kocsis JD, Akiyama Y, Lankford KL, Radtke C (2002) Cell transplantation of peripheral-myelin-forming cells to repair the injured spinal cord. J Rehabil Res Dev 39:287–298

    PubMed  Google Scholar 

  • Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96:10711–10716

    Article  CAS  PubMed  Google Scholar 

  • Lee AC, Yu VM, Lowe JB et al (2003) Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol 184:295–303

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen J, Chen XG et al (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523

    CAS  PubMed  Google Scholar 

  • Lu D, Li Y, Wang L et al (2001) Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 18:813–819

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Li Y, Mahmood A et al (2002) Neural and marrow-derived stromal cell sphere transplantation in a rat model of traumatic brain injury. J Neurosurg 97:935–940

    Article  PubMed  Google Scholar 

  • Lu J, Moochhala S, Moore XL et al (2006) Adult bone marrow cells differentiate into neural phenotypes and improve functional recovery in rats following traumatic brain injury. Neurosci Lett 398:12–17

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Chen X, Zhang CW et al (2008) Morphological and functional characterization of predifferentiation of myelinating glia-like cells from human bone marrow stromal cells through activation of F3/Notch signaling in mouse retina. Stem Cells 26:580–590

    Article  CAS  PubMed  Google Scholar 

  • Mahmood A, Lu D, Wang L et al (2001) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49:1196–1203

    Article  CAS  PubMed  Google Scholar 

  • Mahmood A, Lu D, Lu M, Chopp M (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53:697–702

    Article  PubMed  Google Scholar 

  • Mahmood A, Lu D, Chopp M (2004) Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 55:1185–1193

    Article  PubMed  Google Scholar 

  • Mahmood A, Lu D, Qu C, Goussev A, Chopp M (2006) Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. J Neurosurg 104:272–277

    Article  PubMed  Google Scholar 

  • Marcol W, Kotulska K, Swiech-Sabuda E et al (2003) Regeneration of sciatic nerves of adult rats induced by extracts from distal stumps of pre-degenerated peripheral nerves. J Neurosci Res 72:417–424

    Article  CAS  PubMed  Google Scholar 

  • Mimura T, Dezawa M, Kanno H, Sawada H, Yamamoto I (2004) Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats. J Neurosurg 101:806–812

    Article  PubMed  Google Scholar 

  • Munoz-Elias G, Woodbury D, Black IB (2003) Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 21:437–448

    Article  PubMed  Google Scholar 

  • Neuhuber B, Timothy Himes B, Shumsky JS, Gallo G, Fischer I (2005) Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Res 1035:73–85

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Suzuki Y, Noda T et al (2004) Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 187:266–278

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Liu J, Ding F et al (2006) Investigation of differentially expressed proteins in rat gastrocnemius muscle during denervation–reinnervation. J Muscle Res Cell Motil 27:241–250

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Taguchi T, Tanaka H et al (2004) Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochem Biophys Res Commun 322:918–922

    Article  CAS  PubMed  Google Scholar 

  • Sze SK, de Kleijn DP, Lai RC et al (2007) Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics 6:1680–1689

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Liu XL, Zhu JK et al (2008) Bridging small-gap peripheral nerve defects using a cellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res 1188:44–53

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ding F, Gu Y, Liu J, Gu X (2009) Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res 1262:7–15

    Article  CAS  PubMed  Google Scholar 

  • Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23:392–402

    Article  CAS  PubMed  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Suzuki Y, Ejiri Y et al (2003) Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res 72:343–351

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen X, Ding F et al (2007) Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 28:1643–1652

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Qin Z, Zhong CJ, Wang Y, Shen XY (2003) Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia. Neurosci Lett 342:93–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The financial supports of the Hi-Tech Research and Development Program of China (863 Program, grant number 2006AA02A128) and the Nature Science Foundation of China (grant number 30670667) are gratefully acknowledged. We thank Professor Jie Liu for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., Wang, J., Ding, F. et al. Neurotrophic Actions of Bone Marrow Stromal Cells on Primary Culture of Dorsal Root Ganglion Tissues and Neurons. J Mol Neurosci 40, 332–341 (2010). https://doi.org/10.1007/s12031-009-9304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9304-6

Keywords

Navigation