Involvement of ERK1/2 Pathway in Neuroprotection by Salidroside Against Hydrogen Peroxide-Induced Apoptotic Cell Death

Abstract

Salidroside is isolated from Rhodiola rosea L., a traditional Chinese medicinal plant, and has a potent antioxidant property. The aim of this study was to investigate the effects of salidroside on hydrogen peroxide (H2O2)-induced cell apoptosis in nerve growth factor (NGF)-differentiated PC12 cells and the possible involvement of the extracellular signal-related protein kinase 1/2 (ERK1/2) signaling pathway. MTT assay, Hoechst 33342 staining, and TdT-mediated dUTP-biotin nick end labeling assay collectively showed that pretreatment with salidroside alleviated, in a dose-dependent manner, cell viability loss and apoptotic cell death induced by H2O2 stimulation in cultured NGF-differentiated PC12 cells. According to Western blot analysis, pretreatment with salidroside transiently caused the activation of ERK1/2 pathway; a selective inhibitor of the mitogen-activated protein kinase kinase (MAPKK, MEK) blocked salidroside-activated ERK pathway and thus attenuated the influences of salidroside on H2O2-induced increase in the level of cleaved caspase-3, a chief executant of apoptosis cascades. Morphological analysis further indicated that in the presence of the MEK inhibitor, the neuroprotective effect of salidroside against H2O2-evoked cell apoptosis was significantly abrogated. Taken together, the results suggest that the neuroprotective effects of salidroside might be modulated by ERK signaling pathway, especially at the level or upstream of the caspase-3 activation.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Behl C, Moosmann B (2002) Oxidative nerve cell death in Alzheimer's disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383(3–4):521–536

    Article  CAS  PubMed  Google Scholar 

  2. Brookes PS, Yoon Y, Robotham JL et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol., Cell Physiol 287(4):C817–C833

    Article  CAS  PubMed  Google Scholar 

  3. Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40(5):e331–e339

    Article  PubMed  Google Scholar 

  4. Cai L, Wang H, Li Q et al (2008) Salidroside inhibits H2O2-induced apoptosis in PC 12 cells by preventing cytochrome c release and inactivating of caspase cascade. Acta Biochimica et Biophysica Sinica 40:796–802

    CAS  PubMed  Google Scholar 

  5. Cao LL, Du GH, Wang MW (2006) The effect of salidroside on cell damage induced by glutamate and intracellular free calcium in PC12 cells. J Asian Nat Prod Res 8(1–2):159–165

    Article  CAS  PubMed  Google Scholar 

  6. Cavanaugh JE, Jaumotte JD, Lakoski JM, Zigmond MJ (2006) Neuroprotective role of ERK1/2 and ERK5 in a dopaminergic cell line under basal conditions and in response to oxidative stress. J Neurosci Res 84(6):1367–1375

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Liu J, Gu X, Ding F (2008) Salidroside attenuates glutamate-induced apoptotic cell death in primary cultured hippocampal neurons of rats. Brain Res 1238:189–198

    Article  CAS  PubMed  Google Scholar 

  8. Chow CW, Herrera Abreu MT, Suzuki T, Downey GP (2003) Oxidative stress and acute lung injury. RespirCell Mol Biol 29:427

    CAS  Google Scholar 

  9. Cuzzocrea S, Riley DP, Caputi AP et al (2001) Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53:135

    CAS  PubMed  Google Scholar 

  10. Darbinyan V, Kteyan A, Panossian A et al (2000) Rhodiola rosea in stress induced fatigue–a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty. Phytomedicine 7(5):365–371

    CAS  PubMed  Google Scholar 

  11. De Sanctis R, De Bellis R, Scesa C et al (2004) In vitro protective effect of Rhodiola rosea extract against hypochlorous acid-induced oxidative damage in human erythrocytes. Biofactors 20(3):147–159

    Article  PubMed  Google Scholar 

  12. Diaz Lanza AM, Abad Martinez MJ, Fernandez Matellano L et al (2001) Lignan and phenylpropanoid glycosides from Phillyrea latifolia and their in vitro anti-inflammatory activity. Planta Med 67(3):219–223

    Article  CAS  PubMed  Google Scholar 

  13. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  14. Duarte AI, Proença T, Oliveira CR et al (2006) Insulin restores metabolic function in cultured cortical neurons subjected to oxidative stress. Diabetes 55(10):2863–2870

    Article  CAS  PubMed  Google Scholar 

  15. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54:271

    Article  CAS  PubMed  Google Scholar 

  16. Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108(16):1912–1916

    Article  PubMed  Google Scholar 

  17. Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281(1–2):9–19

    Article  CAS  PubMed  Google Scholar 

  18. Hillion JA, Takahashi K, Maric D et al (2005) Development of an ischemic tolerance model in a PC12 cell line. J Cereb Blood Flow Metab 25(2):154–162

    Article  CAS  PubMed  Google Scholar 

  19. Hotokezaka H, Sakai E, Kanaoka K et al (2002) U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277(49):47366–47372

    Article  CAS  PubMed  Google Scholar 

  20. Khanna S, Roy S, Parinandi NL et al (2006) Characterization of the potent neuroprotective properties of the natural vitamin E alpha-tocotrienol. J Neurochem 98(5):1474–1486

    Article  CAS  PubMed  Google Scholar 

  21. Koh SH, Kim SH, Kwon H et al (2003) Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Brain Res Mol Brain Res 118(1–2):72–81

    Article  CAS  PubMed  Google Scholar 

  22. Koh SH, Kwon H, Park KH et al (2005) Protective effect of diallyl disulfide on oxidative stress-injured neuronally differentiated PC12 cells. Brain Res Mol Brain Res 133(2):176–186

    Article  CAS  PubMed  Google Scholar 

  23. Kucinskaite A, Briedis V, Savickas A (2004) Experimental analysis of therapeutic properties of Rhodiola rosea L. and its possible application in medicine. Medicina (Kaunas) 40(7):614–619

    Google Scholar 

  24. Lee CS, Kim YJ, Ko HH, Han ES (2005) Synergistic effects of hydrogen peroxide and ethanol on cell viability loss in PC12 cells by increase in mitochondrial permeability transition. Biochem Pharmacol 70(2):317–325

    Article  CAS  PubMed  Google Scholar 

  25. Lee HC, Wei YH (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med 232(5):592–606

    CAS  Google Scholar 

  26. Liao H, Banbury LK, Leach DN (2008) Antioxidant activity of 45 Chinese herbs and the relationship with their TCM characteristics. Evidence-based Compl Alter Med 5:429–434

    Article  Google Scholar 

  27. Mattioli L, Perfumi M (2007) Rhodiola rosea L. extract reduces stress- and CRF-induced anorexia in rats. J Psychopharmacol 21(7):742–750

    Article  PubMed  Google Scholar 

  28. Ming DS, Hillhouse BJ, Guns ES et al (2005) Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytother Res 19:740–743

    Article  CAS  PubMed  Google Scholar 

  29. Misko TP, Highkin MK, Veenhuizen AW et al (1998) Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J Biol Chem 273:15646–15653

    Article  CAS  PubMed  Google Scholar 

  30. Namura S, Zhu J, Fink K et al (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659

    CAS  PubMed  Google Scholar 

  31. Nicholson DW, Thornberry NA (2003) Apoptosis. Life and death decisions. Science 299(5604):214–215

    Article  CAS  PubMed  Google Scholar 

  32. O'Loghlen A, Perez-Morgado MI, Salinas M, Martin ME (2006) N-acetyl-cysteine abolishes hydrogen peroxide-induced modification of eukaryotic initiation factor 4F activity via distinct signalling pathways. Cell Signal 18(1):21–31

    Article  PubMed  Google Scholar 

  33. Pace A, Savarese A, Picardo M et al (2003) Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J Clin Oncol 21(5):927–931

    Article  CAS  PubMed  Google Scholar 

  34. Perfumi M, Mattioli L (2007) Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother Res 21(1):37–43

    Article  CAS  PubMed  Google Scholar 

  35. Reimann-Philipp U, Ovase R, Weigel PH, Grammas P (2001) Mechanisms of cell death in primary cortical neurons and PC12 cells. J Neurosci Res 64(6):654–660

    Article  CAS  PubMed  Google Scholar 

  36. Rui YF, Sun ZH, Gu JP et al (2006) MEK inhibitor PD98059 acutely inhibits synchronized spontaneous Ca2+ oscillations in cultured hippocampal networks. Acta Pharmacologica Sinica 27(7):869–876

    Article  CAS  PubMed  Google Scholar 

  37. Schwabe RF, Brenner DA (2006) Mechanisms of liver injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 290(4):G583–G589

    Article  CAS  PubMed  Google Scholar 

  38. Stocker R, Keaney JF Jr (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84(4):1381–1478

    Article  CAS  PubMed  Google Scholar 

  39. Tang LL, Wang R, Tang XC (2005) Huperzine A protects SHSY5Y neuroblastoma cells against oxidative stress damage via nerve growth factor production. Eur J Pharmacol 519(1–2):9–15

    Article  CAS  PubMed  Google Scholar 

  40. Tang SY, Whiteman M, Peng ZF et al (2004) Characterization of antioxidant and antiglycation properties and isolation of active ingredients from traditional chinese medicines. Free Radic Biol Med 36(12):1575–1587

    Article  CAS  PubMed  Google Scholar 

  41. Traber MG, Sies H (1996) Vitamin E in humans: demand and delivery. Annu Rev Nutr 16:321–347

    Article  CAS  PubMed  Google Scholar 

  42. Troadec JD, Marien M, Mourlevat S et al (2002) Activation of the mitogen-activated protein kinase (ERK1/2) signaling pathway by cyclic AMP potentiates the neuroprotective effect of the neurotransmitter noradrenaline on dopaminergic neurons. Mol Pharmacol 62(5):1043–1052

    Article  CAS  PubMed  Google Scholar 

  43. Waldo GS, Penner-Hahn JE (1995) Mechanism of manganese catalase peroxide disproportionation: determination of manganese oxidation states during turnover. Biochemistry 34:1507–1512

    Article  CAS  PubMed  Google Scholar 

  44. Xiang YZ, Shang HC, Gao XM et al (2008) A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 22(7):851–858

    Article  PubMed  Google Scholar 

  45. Yu P, Hu C, Meehan EJ, Chen L (2007) X-ray crystal structure and antioxidant activity of salidroside, a phenylethanoid glycoside. Chem Biodiv 4(3):508–513

    Article  CAS  Google Scholar 

  46. Yu S, Liu M, Gu X, Ding F (2008) Neuroprotective effects of salidroside in the PC12 cell model exposed to hypoglycemia and serum limitation. Cell Mol Neurobiol 28(8):1067–1078

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Yu H, Sun Y et al (2007) Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol 564(1–3):18–25

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Liu Y (2005) Study on effects of salidroside on lipid peroxidation on oxidative stress in rat hepatic stellate cells. Zhong Yao Cai 28(9):794–796

    PubMed  Google Scholar 

  49. Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 70(2):181–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Hi-Tech Research and Development Program of China (973 Program, Grant No. 2003CB515306).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fei Ding.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, S., Shen, Y., Liu, J. et al. Involvement of ERK1/2 Pathway in Neuroprotection by Salidroside Against Hydrogen Peroxide-Induced Apoptotic Cell Death. J Mol Neurosci 40, 321–331 (2010). https://doi.org/10.1007/s12031-009-9292-6

Download citation

Keywords

  • Salidroside
  • Hydrogen peroxide
  • Apoptosis
  • NGF-differentiated PC12 cells
  • Neuroprotection
  • Extracellular signal-regulated kinase (ERK)