Advertisement

Journal of Molecular Neuroscience

, Volume 39, Issue 3, pp 391–401 | Cite as

PACAP Induces Signaling and Stimulation of 5-Hydroxytryptamine Release and Growth in Neuroendocrine Tumor Cells

  • Patrizia M. GermanoEmail author
  • Sandy N. Lieu
  • Janjing Xue
  • Helen J. Cooke
  • Fievos L. Christofi
  • Yuxin Lu
  • Joseph R. Pisegna
Article

Abstract

Neuroendocrine tumors, although rare, are currently diagnosed with increasing frequency, owing to improved imaging techniques and a greater clinical awareness of this condition. To date, BON is a very well established and characterized human pancreatic neuroendocrine tumor cell line used to study the signal transduction and genetic regulation of neuroendocrine tumors secretion and growth. The secretory activity of BON cells is known to release peptides, such as chromogranin A, neurotensin, and biogenic amines, as 5-HT, permitting an assessment of their biological activity. The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP), released from the enteric neurons in the gastrointestinal tract by binding to its high affinity receptor PAC1, has been previously shown to regulate the secretory activity and growth of the neuroendocrine-derived enterochromaffin-like cells in the stomach. This led us to speculate that PACAP might also play an important role in regulating the growth of human neuroendocrine tumors. Accordingly, in the current study, we have shown that BON cells express PAC1 receptors, which are rapidly internalized upon PACAP activation. Furthermore, PAC1 receptor activation, in BON cells, couple to intracellular Ca2+ as well as cAMP responses and induce the release of intracellular 5-HT, activate mitogen activated protein kinases, and stimulate cellular growth. These data indicate that PACAP functionally can stimulate 5-HT release and promote the growth of the BON neuroendocrine tumor cell line. Therefore, PACAP and its receptors regulate neuroendocrine tumor secretory activity and growth in vivo, and this knowledge will permit the development of novel diagnostic and therapeutic targets for managing neuroendocrine tumors in humans.

Keywords

BON cell Carcinoid tumor PACAP 

Notes

Acknowledgements

This work was supported by the Department of Veterans Affairs Merit Review Grant (JRP) and National Institutes of Health DK37240 (HJC).

References

  1. Ahlund, L., Nilsson, O., Kling-Petersen, T., Wigander, A., Theodorsson, E., Dahlstrom, A., et al. (1989). Serotonin-producing carcinoid tumor cells in long-term culture. Acta Oncologica, 28, 314–346.Google Scholar
  2. Carraway, R. E., Mitra, S. P., Evers, B. M., & Townsend, C. M., Jr. (1994). BON cells display the intestinal patter of neurotensin/neuromedin N precursor processing. Regulatory Peptides, 53, 17–29. doi: 10.1016/0167-0115(94)90155-4.CrossRefPubMedGoogle Scholar
  3. Creutzfeldt, W. C. (1996). Tumors: development of our knowledge. World Journal of Surgery, 20, 126–131. doi: 10.1007/s002689900020.CrossRefPubMedGoogle Scholar
  4. Germano, P. M., Stalter, J., Le, S. V., Wu, M., Yamaguchi, D. J., Scott, D., et al. (2001a). Characterization of the pharmacology, signal transduction and internalization of fluorescent PACAP ligand, fluor-PACAP, on NIH/3T3 cells expressing PAC1. Peptides, 22, 861–866. doi: 10.1016/S0196-9781(01)00410-7.CrossRefPubMedGoogle Scholar
  5. Germano, P. M., Wu, M., Yamaguchi, D. J., Tachiki, K., & Pisegna, J. R. (2001b). PACAP hormone effects on PAC1-positive Jurkat cells. Regulatory Peptides, 102, 55.Google Scholar
  6. Germano, P. M., Le, S. V., Oh, D. S., Fan, R., Lieu, S., Siu, A., et al. (2004). Differential coupling of the PAC1 SV1 splice variant on human Colonic tumors to the activation of intracellular cAMP but not intracellular Ca 2+ does not activate tumor proliferation. Journal of Molecular Neuroscience, 22(1–2), 83–92. doi: 10.1385/JMN:22:1-2:83.CrossRefPubMedGoogle Scholar
  7. Gottschall, P. E., Tatsuno, I., Miyata, A., & Arimura, A. (1993). Characterization and distribution of bind sites for the hypothalamic peptide, pituitary adenylate cyclase activating polypeptide (PACAP): characterization and molecular identification. Endocrinology, 127, 272–277.CrossRefGoogle Scholar
  8. Halford, S., & Waxman, J. (1998). The management of carcinoid tumors. QJM, 91, 95–798.CrossRefGoogle Scholar
  9. Harmar, A. J., Arimura, A., Gozes, I., et al. (1998). International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacological Reviews, 50, 265–270.PubMedGoogle Scholar
  10. Hofsli, E., Thommesen, L., Yadetie, F., Langaas, M., Kusnierczyk, W., Falkmer, U., et al. (2003). Identification of novel growth factor-responsive genes in neuroendocrine gastrointestinal tumour cells. British Journal of Cancer, 92, 1506–1516.CrossRefGoogle Scholar
  11. Hopfner, M., Sutter, Ap, Gerst, B., Zeitz, M., & Scherubl, H. (2003). A novel approach in the treatment of neuroendocrine gastrointestinal tumours. Targeting the epidermal growth factor receptor by gefitinib (ZD1839). British Journal of Cancer, 89, 1766–1775.CrossRefPubMedGoogle Scholar
  12. Ishihara, T., Shigemoto, R., Mori, K., Takahashi, K., & Nagata, S. (1992). Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron, 8, 811–819.CrossRefPubMedGoogle Scholar
  13. Ishizuka, J., Beauchamp, R. D., Townsend, C. M., Jr., Greeley, G. H., Jr., & Thompson, J. C. (1992). Receptor-mediated autocrine growth-stimulatory effect of 5-hydroxytryptamine on cultured human pancreatic carcinoid cells. Journal of Cellular Physiology, 150(1), 1–7.CrossRefPubMedGoogle Scholar
  14. Journot, L., Villalba, M., & Boachaert, J. (1996). PACAP-38 protects cerebellar granule cells from apoptosis. Annals of the New York Academy of Sciences, 805, 302–314.Google Scholar
  15. Kalcheim, C., Langley, K., & Unsicker, K. (2002). From the neural crest to chromaffin cells: introduction to a session on chromaffin cell development. Annals of the New York Academy of Sciences, 971, 544–546.CrossRefPubMedGoogle Scholar
  16. Kim, M., Cooke, H. J., Javed, N. H., Carvey, H. V., Christofi, F., & Raybould, H. E. (2001a). D-glucose releases 5-hydroxytryptamine from human BON cells as a model of enterochromaffin cells. Gastroenterology, 121, 1400–1406.CrossRefPubMedGoogle Scholar
  17. Kim, M., Javed, N. H., Yu, J., Christofi, F., & Cooke, H. J. (2001b). Mechanical stimulation activates Gαq signaling pathways and 5-hydroxytryptamine release from human carcinoid BON cells. Journal of Clinical Investigation, 108, 1051–1060.PubMedGoogle Scholar
  18. Kuroda, S., & Tanizawa, K. (1999). Involvment of epidermal growth factor-like domain of NELL proteins in the novel protein-protein interactin with protein kinase C. Biochemical and Biophysical Research Communications, 265, 752–757.CrossRefPubMedGoogle Scholar
  19. Langley, K. (1994). The neuroendocrine concept today. Annals of the New York Academy of Sciences, 733, 1–17.CrossRefPubMedGoogle Scholar
  20. Le, S. V., Yamaguchi, D. J., McArdle, C. A., Tachiki, K., Pisegna, J. R., & Germano, P. (2002). PAC1 and PACAP expression, signaling, and effect on the growth of HCT8, human Colonic tumor cells. Regulatory Peptides, 109, 115–125.CrossRefPubMedGoogle Scholar
  21. Lee, M., Jensen, R. T., Huang, S. C., Bepler, G., Korman, L., & Moody, T. W. (1990). Vasoactive intestinal polypeptide binds with high affinity to non-small cell lung cancer cells and elevates cAMP levels. Peptides, 11, 1205–1209.CrossRefPubMedGoogle Scholar
  22. Lemmer, K., Ahnert-Hilger, G., Hopfner, M., Hoegerle, S., Faiss, S., Grabowski, P., et al. (2002). Expression of dopamine receptors and transporter in neuroendocrine gastrointestinal tumor cells. Life Science, 71, 667–678.CrossRefGoogle Scholar
  23. Leyton, J., Gozes, Y., Pisegna, J. R., Coy, D., Purdom, S., Casibang, M., et al. (1999). PACAP (6–38) is a PACAP receptor antagonist for breast cancer cells. Breast Cancer Research and Treatment, 56, 177–186.CrossRefPubMedGoogle Scholar
  24. Li, J., Hellmich, M., Greeley, G., Townsend, C., & Evers, B. M. (2002). Phorbol ester-mediated neurotensin secretion is dependent on the PKC-α and δ-isoforms. American Journal of Physiology: Gastrointestinal and Liver Physiology, 283, G1197–G1206.PubMedGoogle Scholar
  25. Li, J., O’Conner, K. L., Hellmich, M. R., Greeley, G. H., Jr., Townsend, C. M., Jr., & Evers, B. M. (2004). The role of protein kindase D in neurotensin secretion medited by protein kinase C-α/-δ and Rho/Rho kinase. Journal of Biological Chemistry, 279, 28466–28474.CrossRefPubMedGoogle Scholar
  26. Lutz, E. M., Sheward, W. J., West, K. M., Morrow, J. A., Fink, G., & Harmar, A. J. (1993). The VIP2 receptor: molecular characterization of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Letter, 334, 3–8.CrossRefGoogle Scholar
  27. Lyu, R., Germano, P. M., Choi, J. K., Le, S. V., & Pisegna, J. R. (2000). Identification of an essential amino acid motif within the C-terminus of the pituitary adenylate cyclase-activating polypeptide type 1 receptor that is critical for signal truncation but not for receptor internalization. Journal of Biological Chemistry, 275, 36134–36142.CrossRefPubMedGoogle Scholar
  28. Mergler, S. (2003). Ca2+ channel characteristics in neuroendocrine tumor cell cultures analyzed by color contour plots. Journal of Neuroscience Methods, 129, 169–181.CrossRefPubMedGoogle Scholar
  29. Miampamba, M., Germano, P. M., Arli, S., Wong, H. H., Scott, D., Tache, Y., et al. (2002). Expression of pituitary adenylate cyclase-activating polypeptide and PACAP type I receptor in the rat gastric and coloine myenteric neurons. Regulatory Peptides, 105, 145–154.PubMedGoogle Scholar
  30. Miyata, A., Jiang, L., Dahl, R. R., Kitada, C., Kubo, K., Fujino, M., et al. (1990). Isolation of a neuropeptides corresponding to the N-terminal 27 residues of the pituitary adenlyate cyclase activating polypeptide with 38 residues (PACAP-38). Biochemical and Biophysical Research Communications, 170, 643–648.CrossRefPubMedGoogle Scholar
  31. Moody, T. W., Zia, F., & Makheja, A. (1993). Pituitary adenylate cyclase activating polypeptide receptors are present on small cell lung cancer cells. Peptides, 14, 241–246.CrossRefPubMedGoogle Scholar
  32. Moody, T. W., Leyton, J., Casibang, M., Pisegna, J. R., & Jensen, R. T. (2002). PACAP-27 tyrosine phosphorylates mitogen activated protein kinase and increases VEGF mRNAs in human lung cancer cells. Regulatory Peptides, 109, 135–140.CrossRefPubMedGoogle Scholar
  33. O’Connor, D. T., & Deftos, L. J. (1986). Secretion of chromogranin A by peptide-producing endocrine neoplasms. New England Journal of Medicine, 314, 1145–1151.PubMedCrossRefGoogle Scholar
  34. Parekh, D., Ishizuka, J., Townsend, C. M., Jr., et al. (1994). Characterization of a human pancreatic carcinoid in vitro: morphology, amine and peptide storage, and secretion. Pancreas, 9, 83–90.CrossRefPubMedGoogle Scholar
  35. Payet, M. D., Bilodeau, L., Breadult, L., Fournier, A., Yon, L., Vaudry, H., et al. (2003). PAC1 receptor activation by PACAP-38 mediates Ca2+ release from a cAMP-dependent pool in human fetal adrenal gland chromaffin cells. Journal of Biological Chemistry, 278, 1663–1670.CrossRefPubMedGoogle Scholar
  36. Pisegna, J. R., & Sawicki, M. P. (2001). Neuroendocrine pancreas. In C. M. Haskell & J. S. Berek (Eds.), Cancer treatment, Chap. 69 (pp. 1065–1081). Philadelphia, PA: Saunders.Google Scholar
  37. Pisegna, J. R., & Wank, S. A. (1993). Molecular cloning and fuctional expression of the pituitary adenylate cylcase-activating polypeptide type I receptor. Proceedings of the National Academy of Sciences, 90, 6345–6349.CrossRefGoogle Scholar
  38. Pisegna, J. R., & Wank, S. A. (1996). Cloning characterization of the signal transduction of four splice variants of the human pituitary adenylate cylcase activating polypeptide receptor. Evidence for dual coupling to adenylate cyclase and phospholipase C. Journal of Biological Chemistry, 271, 17267–17274.CrossRefPubMedGoogle Scholar
  39. Pisegna, J. R., Leyton, J., Coelho, T., Hida, T., Jakolew, S., Birrer, S., et al. (1997). Differential activation of immediate-early gene expression by four splice variants of the human pituitary activating polypeptide receptor: evident for activation by PACAP hybrid and the phospholipase C inhibitor U73122. Life Science, 61, 631–639.CrossRefGoogle Scholar
  40. Schomerus, E., Poch, A., Bunting, R., Mason, W. T., & McArdle, C. A. (1994). Effects of pituitary adenylate cyclase-activating polypeptide in the pituitary: activation of two signal transduction pathways in the gonadotrope-derived alpha T3-1 cell line. Endocrinology, 34(1), 315–323.CrossRefGoogle Scholar
  41. Sippel, R. S., Carpenter, J. E., Kunnimalaiyaan, M., Lagerholm, S., & Chen, H. (2003). Raf-1 activation suppresses neuroendocrine markers and hormone levels in human gastrointestinal carcinoid cells. American Journal of Physiology: Gastrointestinal and Liver Physiology, 285, G245–G254.PubMedGoogle Scholar
  42. Solomon, Y., Londos, C., & Rodbell, M. (1974). A highly sensitive adenylate cyclase assay. Analytical Biochemistry, 58, 541–548.CrossRefGoogle Scholar
  43. Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P. H., et al. (1993). Differential signal transduction by five splice variants of the PACAP receptor. Nature, 365, 170–175.CrossRefPubMedGoogle Scholar
  44. Townsend, C. M., Ishizuka, J., & Thompson, J. C. (1993). Studies of growth regulation in a neuroendocrine cell line. Acta Oncologica, 32, 125–130.CrossRefPubMedGoogle Scholar
  45. Tran, V. S., Marion-Audibert, A. M., Karatekin, E., Huet, S., Cribier, S., Guillaumie, K., et al. (2004). Serotonin secretion by human carcinoid BON cells. Annals of the New York Academy of Sciences, 1014, 179–188.CrossRefPubMedGoogle Scholar
  46. von Wichert, G., Haeussler, U., Greten, F. R., Kliche, S., Dralle, H., Bohm, B. O., et al. (2005). Regulation of cyclin D1 expression by autocrine IGF-I in human BON neuroendocrine tumour cells. Oncogene, 24(7), 1284–1289.CrossRefGoogle Scholar
  47. Wallach, D., Varfolomeev, E. E., Malinin, N. L., Goltsev, T. V., Kovalenko, A. V., & Boldin, M. P. (1999). Tumor necrosis factor receptor and Fas signaling mechanisms. Annual Review of Immunology, 17, 331–367.CrossRefPubMedGoogle Scholar
  48. Zanner, R., Hapfelmeier, G., Gratzl, M., & Prinz, C. (2002). Intracellular signal transduction during gastrin-induced histamine secretion in rat gastric ECL cells. American Journal of Physiology. Cell Physiology, 282(C), 374–382.Google Scholar
  49. Zeng, N., Athmann, C., Kang, T., Lyu, R. M., Walsh, J. H., Ohning, G. V., et al. (1991). PACAP type I receptor activation regulates ECL cells and gastric acid secretion. Journal of Clinical Investigation, 104, 1383–1391.CrossRefGoogle Scholar
  50. Zhang, T., Townsend, C. M., Jr., Udupi, V., Yanaihara, N., Rajaraman, S., Beauchamp, R. D., et al. (1995). Phorbol ester-induced alteration in the patter of secretion and storage of chromogranin A and neurotensin in a human pancreatic carcinoid cell line. Endocrinology, 136, 2252–2261.CrossRefPubMedGoogle Scholar
  51. Zia, F., Fargarasan, M., Bitar, K., Coy, D. H., Pisegna, J. R., Wank, S. A., et al. (1995). Pituitary adenylate cyclase activating peptide receptors regulate the growth of non-small cell lung cancer cells. Cancer Research, 44, 4886–4891.Google Scholar

Copyright information

© Humana Press 2009

Authors and Affiliations

  • Patrizia M. Germano
    • 1
    Email author
  • Sandy N. Lieu
    • 1
  • Janjing Xue
    • 2
  • Helen J. Cooke
    • 2
  • Fievos L. Christofi
    • 2
  • Yuxin Lu
    • 1
  • Joseph R. Pisegna
    • 1
  1. 1.CURE: Digestive Diseases Research Center, VA Greater Los Angeles Healthcare System and Department of MedicineUniversity of CaliforniaLos AngelesUSA
  2. 2.Departments of Neuroscience and AnesthesiologyThe Ohio State UniversityColumbusUSA

Personalised recommendations