Skip to main content

Advertisement

Log in

Correspondence Between Neurological Deficit, Cerebral Infarct Size, and Rho-Kinase Activity in a Rat Cerebral Thrombosis Model

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Whether Rho-kinase activity is really associated with the pathogenesis of cerebral infarction remains unclear. To consider this question, we investigated correspondences between severity of neurological deficit, infarct size, amount of various marker proteins, and Rho-kinase activity in a rat cerebral infarction model. Sodium laurate was injected into the left internal carotid artery, inducing cerebral infarction in the ipsilateral hemisphere in rats. We prepared rats with various severities of neurological deficit (mild to severe) 3 days after injection of laurate, then measured infarct size and amount of various marker proteins, phosphorylation of substrates of Rho-kinase, myosin-binding subunit (MBS), myosin light chain (MLC), ezrin/radixin/moesin (ERM), and adducin using Western blot methods. First, infarct size increased corresponding to the severity of neurological deficit. Second, amounts of activating transcription factor 3, nestin, CD68, proliferating cell nuclear antigen, and heat shock protein 70 were increased, whereas neurofilament and myelin-associated glycoprotein were decreased corresponding to the severity of neurological deficit and infarct size. Finally, Rho-kinase activity (phospho-MBS/MBS, phospho-MLC/MLC, phospho-ERM/ERM, and phospho-adducin/adducin) was increased corresponding to the severity of neurological deficit and infarct size. Rho-kinase thus appears to play a crucial role in the pathogenesis of cerebral infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Amano, M., Chihara, K., Nakamura, N., Fukata, Y., Yano, T., Shibata, M., et al. (1998). Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes to Cells, 3(3), 177–188. doi:10.1046/j.1365-2443.1998.00181.x.

    Article  PubMed  CAS  Google Scholar 

  • Amano, M., Fukata, Y., & Kaibuchi, K. (2000). Regulation and functions of Rho-associated kinase. Experimental Cell Research, 261(1), 44–51. doi:10.1006/excr.2000.5046.

    Article  PubMed  CAS  Google Scholar 

  • Bederson, J. B., Pitts, L. H., Germano, S. M., Nishimura, M. C., Davis, R. L., & Bartkowski, H. M. (1986). Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke, 17(6), 1304–1308.

    PubMed  CAS  Google Scholar 

  • Bito, H., Furuyashiki, T., Ishihara, H., Shibasaki, Y., Ohashi, K., Mizuno, K., et al. (2000). A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron, 26(2), 431–441. doi:10.1016/S0896-6273(00)81175-7.

    Article  PubMed  CAS  Google Scholar 

  • Brabeck, C., Mittelbronn, M., Bekure, K., Meyermann, R., Schluesener, H. J., & Schwab, J. M. (2003). Effect of focal cerebral infarctions on lesional RhoA and RhoB expression. Archives of Neurology, 60(9), 1245–1249. doi:10.1001/archneur.60.9.1245.

    Article  PubMed  Google Scholar 

  • Dirnagl, U., Iadecola, C., & Moskowitz, M. A. (1999). Pathobiology of ischaemic stroke: an integrated view. Trends in Neurosciences, 22(9), 391–397. doi:10.1016/S0166-2236(99)01401-0.

    Article  PubMed  CAS  Google Scholar 

  • Fukata, Y., Amano, M., & Kaibuchi, K. (2001). Rho–Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends in Pharmacological Sciences, 22(1), 32–39. doi:10.1016/S0165-6147(00)01596-0.

    Article  PubMed  CAS  Google Scholar 

  • Hata, R., Maeda, K., Hermann, D., Mies, G., & Hossmann, K. A. (2000). Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. Journal of Cerebral Blood Flow and Metabolism, 20(2), 306–315. doi:10.1097/00004647-200002000-00012.

    PubMed  CAS  Google Scholar 

  • Ito, K., Shimomura, E., Iwanaga, T., Shiraishi, M., Shindo, K., Nakamura, J., et al. (2003). Essential role of rho kinase in the Ca2+ sensitization of prostaglandin F(2alpha)-induced contraction of rabbit aortae. The Journal of Physiology, 546(Pt 3), 823–836. doi:10.1113/jphysiol.2002.030775.

    Article  PubMed  CAS  Google Scholar 

  • Kawano, Y., Fukata, Y., Oshiro, N., Amano, M., Nakamura, T., Ito, M., et al. (1999). Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. The Journal of Cell Biology, 147(5), 1023–1038. doi:10.1083/jcb.147.5.1023.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, K., Fukata, Y., Matsuoka, Y., Bennett, V., Matsuura, Y., Okawa, K., et al. (1998). Regulation of the association of adducin with actin filaments by Rho-associated kinase (Rho-kinase) and myosin phosphatase. The Journal of Biological Chemistry, 273(10), 5542–5548. doi:10.1074/jbc.273.10.5542.

    Article  PubMed  CAS  Google Scholar 

  • Kozma, R., Sarner, S., Ahmed, S., & Lim, L. (1997). Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Molecular and Cellular Biology, 17(3), 1201–1211.

    PubMed  CAS  Google Scholar 

  • Miyata, K., Shimokawa, H., Kandabashi, T., Higo, T., Morishige, K., Eto, Y., et al. (2000). Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(11), 2351–2358.

    PubMed  CAS  Google Scholar 

  • Mueller, B. K., Mack, H., & Teusch, N. (2005). Rho kinase, a promising drug target for neurological disorders. Nature Reviews, 4(5), 387–398.

    Article  PubMed  CAS  Google Scholar 

  • Ohba, N., Maeda, M., Nakagomi, S., Muraoka, M., & Kiyama, H. (2003). Biphasic expression of activating transcription factor-3 in neurons after cerebral infarction. Brain Research, 115(2), 147–156. doi:10.1016/S0169-328X(03)00181-5.

    Article  PubMed  CAS  Google Scholar 

  • Riento, K., & Ridley, A. J. (2003). Rocks: multifunctional kinases in cell behaviour. Nature Reviews. Molecular Cell Biology, 4(6), 446–456. doi:10.1038/nrm1128.

    Article  PubMed  CAS  Google Scholar 

  • Rikitake, Y., Kim, H. H., Huang, Z., Seto, M., Yano, K., Asano, T., et al. (2005). Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke, 36(10), 2251–2257. doi:10.1161/01.STR.0000181077.84981.11.

    Article  PubMed  CAS  Google Scholar 

  • Sakurada, K., Seto, M., & Sasaki, Y. (1998). Dynamics of myosin light chain phosphorylation at Ser19 and Thr18/Ser19 in smooth muscle cells in culture. The American Journal of Physiology, 274(6 Pt 1), C1563–C1572.

    PubMed  CAS  Google Scholar 

  • Sato, M., Tani, E., Fujikawa, H., & Kaibuchi, K. (2000). Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circulation Research, 87(3), 195–200.

    PubMed  CAS  Google Scholar 

  • Satoh, S., Kobayashi, T., Hitomi, A., Ikegaki, I., Suzuki, Y., Shibuya, M., et al. (1999). Inhibition of neutrophil migration by a protein kinase inhibitor for the treatment of ischemic brain infarction. Japanese Journal of Pharmacology, 80(1), 41–48. doi:10.1254/jjp.80.41.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, S., Utsunomiya, T., Tsurui, K., Kobayashi, T., Ikegaki, I., Sasaki, Y., et al. (2001). Pharmacological profile of hydroxy fasudil as a selective rho kinase inhibitor on ischemic brain damage. Life Sciences, 69(12), 1441–1453. doi:10.1016/S0024-3205(01)01229-2.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, S., Toshima, Y., Hitomi, A., Ikegaki, I., Seto, M., & Asano, T. (2008). Wide therapeutic time window for Rho-kinase inhibition therapy in ischemic brain damage in a rat cerebral thrombosis model. Brain Research, 1193, 102–108. doi:10.1016/j.brainres.2007.11.050.

    Article  PubMed  CAS  Google Scholar 

  • Shimokawa, H., & Rashid, M. (2007). Development of Rho-kinase inhibitors for cardiovascular medicine. Trends in Pharmacological Sciences, 28(6), 296–302. doi:10.1016/j.tips.2007.04.006.

    Article  PubMed  CAS  Google Scholar 

  • Shin, H. K., Salomone, S., Potts, E. M., Lee, S. W., Millican, E., Noma, K., et al. (2007). Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. Journal of Cerebral Blood Flow and Metabolism, 27(5), 998–1009.

    PubMed  CAS  Google Scholar 

  • Takeuchi, K., Sato, N., Kasahara, H., Funayama, N., Nagafuchi, A., Yonemura, S., et al. (1994). Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. The Journal of Cell Biology, 125(6), 1371–1384. doi:10.1083/jcb.125.6.1371.

    Article  PubMed  CAS  Google Scholar 

  • Toshima, Y., Satoh, S., Ikegaki, I., & Asano, T. (2000). A new model of cerebral microthrombosis in rats and the neuroprotective effect of a Rho-kinase inhibitor. Stroke, 31(9), 2245–2250.

    PubMed  CAS  Google Scholar 

  • Trapp, T., Olah, L., Holker, I., Besselmann, M., Tiesler, C., Maeda, K., et al. (2001). GTPase RhoB: an early predictor of neuronal death after transient focal ischemia in mice. Molecular and Cellular Neurosciences, 17(5), 883–894. doi:10.1006/mcne.2001.0971.

    Article  PubMed  CAS  Google Scholar 

  • Wettschureck, N., & Offermanns, S. (2002). Rho/Rho-kinase mediated signaling in physiology and pathophysiology. Journal of Molecular Medicine (Berlin, Germany), 80(10), 629–638. doi:10.1007/s00109-002-0370-2.

    CAS  Google Scholar 

  • Yagita, Y., Kitagawa, K., Sasaki, T., Miyata, T., Okano, H., Hori, M., et al. (2002). Differential expression of Musashi1 and nestin in the adult rat hippocampus after ischemia. Journal of Neuroscience Research, 69(6), 750–756. doi:10.1002/jnr.10342.

    Article  PubMed  CAS  Google Scholar 

  • Yagita, Y., Kitagawa, K., Sasaki, T., Terasaki, Y., Todo, K., Omura-Matsuoka, E., et al. (2007). Rho-kinase activation in endothelial cells contributes to expansion of infarction after focal cerebral ischemia. Journal of Neuroscience Research, 85(11), 2460–2469. doi:10.1002/jnr.21375.

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi, S., Fujitani, M., Hata, K., Kitajo, K., Mimura, F., Abe, H., et al. (2005). Wallerian degeneration involves Rho/Rho-kinase signaling. The Journal of Biological Chemistry, 280(21), 20384–20388. doi:10.1074/jbc.M501945200.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, K., Kotani, Y., Nakajima, Y., Shimazawa, M., Yoshimura, S., Nakashima, S., et al. (2007). Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Research, 1154, 215–224. doi:10.1016/j.brainres.2007.04.013.

    Article  PubMed  CAS  Google Scholar 

  • Yano, K., Kawasaki, K., Hattori, T., Tawara, S., Toshima, Y., Ikegaki, I., et al. (2008). Demonstration of elevation and localization of Rho-kinase activity in the brain of a rat model of cerebral infarction. European Journal of Pharmacology, 594(1–3), 77–83. doi:10.1016/j.ejphar.2008.07.045.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, K., Yano, K., Sasaki, K. et al. Correspondence Between Neurological Deficit, Cerebral Infarct Size, and Rho-Kinase Activity in a Rat Cerebral Thrombosis Model. J Mol Neurosci 39, 59–68 (2009). https://doi.org/10.1007/s12031-009-9175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9175-x

Keywords

Navigation