Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, lethal, neurodegenerative disorder. The causes of ALS are still obscure. Accumulating evidence supports the hypothesis that oxidative stress and mitochondrial dysfunction can be implicated in ALS pathogenesis. DJ-1 plays an important role in the oxidative stress response. The aim of this study was to discover whether there are changes in DJ-1 expression or in DJ-1-oxidized isoforms in an animal model of ALS. We used mutant SOD1G93A transgenic mice, a commonly used animal model for ALS. Upregulation of DJ-1 mRNA and protein levels were identified in the brains and spinal cords of SOD1G93A transgenic mice as compared to wild-type controls, evident from an early disease stage. Furthermore, an increase in DJ-1 acidic isoforms was detected, implying that there are more oxidized forms of DJ-1 in the CNS of SOD1G93A mice. This is the first report of possible involvement of DJ-1 in ALS. Since DJ-1 has a protective role against oxidative stress, it may suggest a possible therapeutic target in ALS.
Similar content being viewed by others
References
Abe, K., Pan, L. H., Watanabe, M., Kato, T., & Itoyama, Y. (1995). Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neuroscience Letters, 199, 152–154. doi:10.1016/0304-3940(95)12039-7.
Abe, K., Pan, L. H., Watanabe, M., Konno, H., Kato, T., & Itoyama, Y. (1997). Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurological Research, 19, 124–128.
Agar, J., & Durham, H. (2003). Relevance of oxidative injury in the pathogenesis of motor neuron diseases. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 4, 232–242. doi:10.1080/14660820310011278.
Aguirre, N., Beal, M. F., Matson, W. R., & Bogdanov, M. B. (2005). Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis. Free Radical Research, 39, 383–388. doi:10.1080/10715760400027979.
Andrus, P. K., Fleck, T. J., Gurney, M. E., & Hall, E. D. (1998). Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. Journal of Neurochemistry, 71, 2041–2048.
Annesi, G., Savettieri, G., Pugliese, P., et al. (2005). DJ-1 mutations and parkinsonism-dementia-amyotrophic lateral sclerosis complex. Annals of Neurology, 58, 803–807. doi:10.1002/ana.20666.
Aoyama, K., Matsubara, K., Fujikawa, Y., et al. (2000). Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitritemediated oxidative stress in neurodegenerative diseases. Annals of Neurology, 47, 524–527. doi:10.1002/1531-8249(200004)47:4<524::AID-ANA19>3.0.CO;2-5.
Bader, V., Ran Zhu, X., Lubbert, H., & Stichel, C. C. (2005). Expression of DJ-1 in the adult mouse CNS. Brain Research, 1041, 102–111. doi:10.1016/j.brainres.2005.02.006.
Bandopadhyay, R., Kingsbury, A. E., Cookson, M. R., et al. (2004). The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease. Brain, 127, 420–430. doi:10.1093/brain/awh054.
Barber, S. C., Mead, R. J., & Shaw, P. J. (2006). Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochimica et Biophysica Acta, 1762, 1051–1067.
Beal, M. F., Ferrante, R. J., Browne, S. E., Mathews, R. T., Kowall, N. W., & Brown Jr., R. H. (1997). Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Annals of Neurology, 42, 644–654. doi:10.1002/ana.410420416.
Bogdanov, M., Brown, R. H., Matson, W., et al. (2000). Increased oxidative damage to DNA in ALS patients. Free Radical Biology & Medicine, 29, 652–658. doi:10.1016/S0891-5849(00)00349-X.
Bonifati, V., Rizzu, P., van Baren, M. J., et al. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256–259. doi:10.1126/science.1077209.
Canet-Aviles, R. M., Wilson, M. A., Miller, D. W., et al. (2004). The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceedings of the National Academy of Sciences of the United States of America, 101, 9103–9108. doi:10.1073/pnas.0402959101.
Carri, M. T., Ferri, A., Cozzolino, M., Calabrese, L., & Rotilio, G. (2003). Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Research Bulletin, 61, 365–374. doi:10.1016/S0361-9230(03)00179-5.
Casoni, F., Basso, M., Massignan, T., et al. (2005). Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. The Journal of Biological Chemistry, 280, 16295–16304. doi:10.1074/jbc.M413111200.
Cha, C. I., Chung, Y. H., Shin, C. M., et al. (2000). Immunochemical study on the distribution of nitrotyrosine in the brain of the transgenic mice expressing a human Cu/Zn SOD mutation. Brain Research, 853, 156–161. doi:10.1016/S0006-8993(99)02302-1.
Choi, J., Sullards, M. C., Olzmann, J. A., et al. (2006). Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. The Journal of Biological Chemistry, 281, 10816–10824. doi:10.1074/jbc.M509079200.
Clements, C. M., McNally, R. S., Conti, B. J., Mak, T. W., & Ting, J. P. (2006). DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proceedings of the National Academy of Sciences of the United States of America, 103, 15091–15096. doi:10.1073/pnas.0607260103.
Ferrante, R. J., Browne, S. E., Shinobu, L. A., et al. (1997a). Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. Journal of Neurochemistry, 69, 2064–2074.
Ferrante, R. J., Shinobu, L. A., Schulz, J. B., et al. (1997b). Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Annals of Neurology, 42, 326–334. doi:10.1002/ana.410420309.
Fitzmaurice, P. S., Shaw, I. C., Kleiner, H. E., et al. (1996). Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle & Nerve, 19, 797–798.
Gurney, M. E., Pu, H., Chiu, A. Y., et al. (1994). Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 264, 1772–1775. doi:10.1126/science.8209258.
Hall, E. D., Andrus, P. K., Oostveen, J. A., Fleck, T. J., & Gurney, M. E. (1998). Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. Journal of Neuroscience Research, 53, 66–77. doi:10.1002/(SICI)1097-4547(19980701)53:1<66::AID-JNR7>3.0.CO;2-H.
Harraz, M. M., Marden, J. J., Zhou, W., et al. (2008). SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. The Journal of Clinical Investigation, 118, 659–670.
Hensley, K., Fedynyshyn, J., Ferrel, S., et al. (2003). Message and protein level elevations of tumor necrosis factor alpha and TNF-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. Neurobiology of Disease, 14, 74–80. doi:10.1016/S0969-9961(03)00087-1.
Hensley, K., Mhatre, M., Mou, S., et al. (2006). On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxidants & Redox Signalling, 8, 2075–2087. doi:10.1089/ars.2006.8.2075.
Ihara, Y., Nobukuni, K., Takata, H., & Hayabara, T. (2005). Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu,Zn-superoxide dismutase mutation. Neurological Research, 27, 105–108. doi:10.1179/016164105X18430.
Ilieva, E. V., Ayala, V., Jove, M., et al. (2007). Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain, 130, 3111–3123. doi:10.1093/brain/awm190.
Jokic, N., Di Scala, F., Dupuis, L., et al. (2003). Early activation of antioxidant mechanisms in muscle of mutant Cu/Zn-superoxide dismutase-linked amyotrophic lateral sclerosis mice. Annals of the New York Academy of Sciences, 1010, 552–556. doi:10.1196/annals.1299.102.
Kim, R. H., Smith, P. D., Aleyasin, H., et al. (2005). Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 102, 5215–5220. doi:10.1073/pnas.0501282102.
Kraft, A. D., Resch, J. M., Johnson, D. A., & Johnson, J. A. (2007). Activation of the Nrf2–ARE pathway in muscle and spinal cord during ALS-like pathology in mice expressing mutant SOD1. Experimental Neurology, 207, 107–117. doi:10.1016/j.expneurol.2007.05.026.
Lev, N., Ickowicz, D., Melamed, E., & Offen, D. (2008). Oxidative insults induce DJ-1 upregulation and redistribution: implications for neuroprotection. Neurotoxicology, 29, 397–405. doi:10.1016/j.neuro.2008.01.007.
Liu, R., Althaus, J. S., Ellerbrock, B. R., Becker, D. A., & Gurney, M. E. (1998). Enhanced oxygen radical production in a transgenic mouse model of familial amyotrophic lateral sclerosis. Annals of Neurology, 44, 763–770. doi:10.1002/ana.410440510.
Liu, J., Lillo, C., Jonsson, P. A., et al. (2004). Toxicity of familial ALS-Linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron, 43, 5–17. doi:10.1016/j.neuron.2004.06.016.
Liu, D., Wen, J., Liu, J., & Li, L. (1999). The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. The FASEB Journal, 13, 2318–2328.
Mahoney, D. J., Kaczor, J. J., Bourgeois, J., Yasuda, N., & Tarnopolsky, M. A. (2006). Oxidative stress and antioxidant enzyme upregulation in SOD1-G93A mouse skeletal muscle. Muscle & Nerve, 33, 809–816. doi:10.1002/mus.20542.
Martinat, C., Shendelman, S., Jonason, A., et al. (2004). Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES-derived cell model of primary Parkinsonism. PLoS Biology, 2, e327. doi:10.1371/journal.pbio.0020327.
Menzies, F. M., Yenisetti, S. C., & Min, K. T. (2005). Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress. Current Biology, 15, 1578–1582. doi:10.1016/j.cub.2005.07.036.
Meulener, M., Whitworth, A. J., Armstrong-Gold, C. E., et al. (2005). Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease. Current Biology, 15, 1572–1577. doi:10.1016/j.cub.2005.07.064.
Mitsumoto, A., Nakagawa, Y., Takeuchi, A., Okawa, K., Iwamatsu, A., & Takanezawa, Y. (2001). Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radical Research, 35, 301–310. doi:10.1080/10715760100300831.
Nagakubo, D., Taira, T., Kitaura, H., et al. (1997). DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochemical and Biophysical Research Communications, 231, 509–513. doi:10.1006/bbrc.1997.6132.
Perluigi, M., Poon, H. F., Hensley, K., et al. (2005). Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice: a model of familial amyotrophic lateral sclerosis. Free Radical Biology & Medicine, 38, 960–968. doi:10.1016/j.freeradbiomed.2004.12.021.
Poon, H. F., Hensley, K., Thongboonkerd, V., et al. (2005). Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice-a model of familial amyotrophic lateral sclerosis. Free Radical Biology & Medicine, 39, 453–462. doi:10.1016/j.freeradbiomed.2005.03.030.
Sekito, A., Koide-Yoshida, S., Niki, T., Taira, T., Iguchi-Ariga, S. M., & Ariga, H. (2006). DJ-1 interacts with HIPK1 and affects H2O2-induced cell death. Free Radical Research, 40, 155–165. doi:10.1080/10715760500456847.
Shaw, P. J., Ince, P. G., Falkous, G., & Mantle, D. (1995). Oxidative damage to protein in sporadic motor neuron disease spinal cord. Annals of Neurology, 38, 691–695. doi:10.1002/ana.410380424.
Shibata, N., Kawaguchi, M., Uchida, K., et al. (2007). Protein-bound crotonaldehyde accumulates in the spinal cord of superoxide dismutase-1 mutation-associated familial amyotrophic lateral sclerosis and its transgenic mouse model. Neuropathology, 27, 49–61. doi:10.1111/j.1440-1789.2006.00746.x.
Shibata, N., Nagai, R., Uchida, K., et al. (2001). Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Research, 917, 97–104. doi:10.1016/S0006-8993(01)02926-2.
Simpson, E. P., Henry, Y. K., Henkel, J. S., Smith, R., & Appel, S. H. (2004). Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology, 62, 1758–1765.
Smith, R. G., Henry, Y. K., Mattson, M. P., & Appel, S. H. (1998). Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Annals of Neurology, 44, 696–699. doi:10.1002/ana.410440419.
Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S. M., Takahashi, K., & Ariga, H. (2004). DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Reports, 5, 213–218. doi:10.1038/sj.embor.7400074.
Tohgi, H., Abe, T., Yamazaki, K., Murata, T., Ishizaki, E., & Isobe, C. (1999). Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Annals of Neurology, 46, 129–131. doi:10.1002/1531-8249(199907)46:1<129::AID-ANA21>3.0.CO;2-Y.
Yokota, T., Sugawara, K., Ito, K., Takahashi, R., Ariga, H., & Mizusawa, H. (2003). Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochemical and Biophysical Research Communications, 312, 1342–1348. doi:10.1016/j.bbrc.2003.11.056.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lev, N., Ickowicz, D., Barhum, Y. et al. DJ-1 Changes in G93A-SOD1 Transgenic Mice: Implications for Oxidative Stress in ALS. J Mol Neurosci 38, 94–102 (2009). https://doi.org/10.1007/s12031-008-9138-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12031-008-9138-7