Skip to main content

Advertisement

Log in

Identification of Novel RasGRF1 Interacting Partners by Large-Scale Proteomic Analysis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The brain-specific Ras guanine nucleotide exchange factor RasGRF1 is a protein harbouring a complex array of structural motifs. It contains a pleckstrin homology (PH1) domain, a coiled coil region (CC) and an ilimaquinone (IQ) one in addition to the catalytic Ras and Rac exchange factor domains. In this study, we used the recombinant N-terminal PH1, CC and IQ region (PHCCIQ) fused to the chitin-binding domain to isolate interacting proteins from mouse brain extracts. The use of an advanced software tool, the Pep-Miner, allowed clustering similar spectra from multiple mass spectrometry analysis, simplifying and improving the analysis of the complex peptide mixture. The most representative classes of RasGRF1-interacting proteins were ribosomal and other RNA-binding proteins, cytoskeletal proteins and proteins involved in vesicular trafficking. We confirmed the interaction of some of the identified proteins using different experimental approaches. We also demonstrated an RNA-dependent association of the PHCCIQ moiety of RasGRF1 with ribosomal protein S6 and Ras-GTPase-activating protein SH3-domain binding protein 2. In addition, we found that purified total RNA binds to the PHCCIQ fusion protein and the recombinant protein associates with poly(A)-sepharose. These data indicate that RasGRF1 can interact with different protein categories and exhibits a potential RNA-binding property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

PH:

Pleckstrin homology

CC:

coiled coil

IQ:

Ilimaquinone

CBD:

Chitin-binding domain

MBP:

Maltose binding protein

MF:

microsomal fraction

CF:

cytosolic fraction

G3BP-2:

Ras-GTPase-activating protein SH3-domain binding protein 2

References

  • Anborgh, P. H., Qian, X., Papageorge, A. G., Vass, W. C., DeClue, J. E., & Lowy, D. R. (1999). Ras-specific exchange factor GRF: oligomerization through its Dbl homology domain and calcium-dependent activation of Raf. Molecular and Cellular Biology, 19, 4611–4622.

    PubMed  CAS  Google Scholar 

  • Baldassa, S., Gnesutta, N., Fascio, U., Sturani, E., & Zippel, R. (2007). SCLIP, a microtubule-destabilizing factor, interacts with RasGRF1 and inhibits its ability to promote Rac activation and neurite outgrowth. The Journal of Biological Chemistry, 282, 2333–2345.

    Article  PubMed  CAS  Google Scholar 

  • Baouz, S., Jacquet, E., Accorsi, K., Hountondji, C., Balestrini, M., Zippel, R., et al. (2001). Sites of phosphorylation by protein kinase A in CDC25Mm/GRF1, a guanine nucleotide exchange factor for Ras. The Journal of Biological Chemistry, 276, 1742–1749.

    PubMed  CAS  Google Scholar 

  • Barnea, E., Sorkin, R., Ziv, T., Beer, I., & Admon, A. (2005). Evaluation of prefractionation methods as a preparatory step for multidimensional based chromatography of serum proteins. Proteomics, 5, 3367–3375.

    Article  PubMed  CAS  Google Scholar 

  • Beer, I., Barnea, E., Ziv, T., & Admon, A. (2004). Improving large-scale proteomics by clustering of mass spectrometry data. Proteomics, 4, 950–960.

    Article  PubMed  CAS  Google Scholar 

  • Brambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A. J., Herron, C. E., et al. (1997). A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature, 390, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum, R. J., Connolly, B. A., & Feig, L. A. (2002). Interaction of Rac exchange factors Tiam1 and Ras-GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Molecular and Cellular Biology, 22, 4073–4085.

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum, R. J., Connolly, B. A., & Feig, L. A. (2003). Regulation of p70 S6 kinase by complex formation between the Rac guanine nucleotide exchange factor (Rac-GEF) Tiam1 and the scaffold spinophilin. The Journal of Biological Chemistry, 278, 18833–18841.

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum, R., Telliez, J. B., Goonesekera, S., & Feig, L. A. (1996). The N-terminal pleckstrin, coiled-coil, and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium. Molecular and Cellular Biology, 16, 4888–4896.

    PubMed  CAS  Google Scholar 

  • Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R., & Owen, D. J. (2002). Molecular architecture and functional model of the endocytic AP2 complex. Cell, 109, 523–535.

    Article  PubMed  CAS  Google Scholar 

  • Farnsworth, C. L., Freshney, N. W., Rosen, L. B., Ghosh, A., Greenberg, M. E., & Feig, L. A. (1995). Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature, 376, 524–527.

    Article  PubMed  CAS  Google Scholar 

  • Forlani, G., Baldassa, S., Lavagni, P., Sturani, E., & Zippel, R. (2006). The guanine nucleotide exchange factor RasGRF1 directly binds microtubules via DHPH2-mediated interaction. The FEBS Journal, 273, 2127–2138.

    Article  PubMed  CAS  Google Scholar 

  • Giese, K. P., Friedman, E., Telliez, J. B., Fedorov, N. B., Wines, M., Feig, L. A., et al. (2001). Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology, 41, 791–800.

    Article  PubMed  CAS  Google Scholar 

  • Gnesutta, N., Ceriani, M., Innocenti, M., Mauri, I., Zippel, R., Sturani, E., et al. (2001). Cloning and characterization of mouse UBPy, a deubiquitinating enzyme that interacts with the ras guanine nucleotide exchange factor CDC25(Mm)/Ras-GRF1. The Journal of Biological Chemistry, 276, 39448–39454.

    Article  PubMed  CAS  Google Scholar 

  • Innocenti, M., Zippel, R., Brambilla, R., & Sturani, E. (1999). CDC25(Mm)/Ras-GRF1 regulates both Ras and Rac signaling pathways. FEBS Letters, 460, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, K., Stirling, R., Hume, D., & Kennedy, D. (2004). Rasputin, more promiscuous than ever: a review of G3BP. The International Journal of Developmental Biology, 48, 1065–1077.

    Article  PubMed  CAS  Google Scholar 

  • Kanai, Y., Dohmae, N., & Hirokawa, N. (2004). Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron, 43, 513–525.

    Article  PubMed  CAS  Google Scholar 

  • Kato, M., Miyazawa, K., & Kitamura, N. (2000). A deubiquitinating enzyme UBPY interacts with the Src homology 3 domain of Hrs-binding protein via a novel binding motif PX(V/I)(D/N)RXXKP. The Journal of Biological Chemistry, 275, 37481–37487.

    Article  PubMed  CAS  Google Scholar 

  • Kiyono, M., Satoh, T., & Kaziro, Y. (1999). G protein beta gamma subunit-dependent Rac-guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm). Proceedings of the National Academy of Sciences of the United States of America, 96, 4826–4831.

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky, G., Krapivinsky, L., Manasian, Y., Ivanov, A., Tyzio, R., Pellegrino, C., et al. (2003). The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron, 40, 775–784.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, J. I., Verdi, J. M., & Meakin, S. O. (1999). Activity-dependent interaction of the intracellular domain of rat trkA with intermediate filament proteins, the beta-6 proteasomal subunit, Ras-GRF1, and the p162 subunit of eIF3. Journal of Molecular Neuroscience, 13, 141–158.

    Article  PubMed  CAS  Google Scholar 

  • Martegani, E., Vanoni, M., Zippel, R., Coccetti, P., Brambilla, R., Ferrari, C., et al. (1992). Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. The EMBO Journal, 11, 2151–2157.

    PubMed  CAS  Google Scholar 

  • Mizuno, E., Iura, T., Mukai, A., Yoshimori, T., Kitamura, N., & Komada, M. (2005). Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Molecular Biology of the Cell, 16, 5163–5174.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsu, F., & Ohno, H. (2003). Adaptor protein complexes as the key regulators of protein sorting in the post-Golgi network. Cell Structure and Function, 28, 419–429.

    Article  PubMed  CAS  Google Scholar 

  • Parker, F., Maurier, F., Delumeau, I., Duchesne, M., Faucher, D., Debussche, L., et al. (1996). A Ras-GTPase-activating protein SH3-domain-binding protein. Molecular and Cellular Biology, 16, 2561–2569.

    PubMed  CAS  Google Scholar 

  • Pelizzola, M., Pavelka, N., Foti, M., & Ricciardi-Castagnoli, P. (2006). AMDA: an R package for the automated microarray data analysis. BMC Bioinformatics, 7, 335.

    Article  PubMed  Google Scholar 

  • Rubino, T., Forlani, G., Vigano, D., Zippel, R., & Parolaro, D. (2004). Modulation of extracellular signal-regulated kinases cascade by chronic delta 9-tetrahydrocannabinol treatment. Molecular and Cellular Neurosciences, 25, 355–362.

    Article  PubMed  CAS  Google Scholar 

  • Rubino, T., Forlani, G., Vigano, D., Zippel, R., & Parolaro, D. (2005). Ras/ERK signalling in cannabinoid tolerance: from behaviour to cellular aspects. Journal of Neurochemistry, 93, 984–991.

    Article  PubMed  CAS  Google Scholar 

  • Shiina, N., Shinkura, K., & Tokunaga, M. (2005). A novel RNA-binding protein in neuronal RNA granules: regulatory machinery for local translation. The Journal of Neuroscience, 25, 4420–4434.

    Article  PubMed  CAS  Google Scholar 

  • Sturani, E., Abbondio, A., Branduardi, P., Ferrari, C., Zippel, R., Martegani, E., et al. (1997). The Ras Guanine nucleotide Exchange Factor CDC25Mm is present at the synaptic junction. Experimental Cell Research, 235, 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Tonini, R., Ciardo, S., Cerovic, M., Rubino, T., Parolaro, D., Mazzanti, M., et al. (2006). ERK-dependent modulation of cerebellar synaptic plasticity after chronic Delta9-tetrahydrocannabinol exposure. The Journal of Neuroscience, 26, 5810–5818.

    Article  PubMed  CAS  Google Scholar 

  • Wickham, L., Duchaine, T., Luo, M., Nabi, I. R., & DesGroseillers, L. (1999). Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Molecular and Cellular Biology, 19, 2220–2230.

    PubMed  CAS  Google Scholar 

  • Wu, Z., & Irizarry, R. A. (2005). Stochastic models inspired by hybridization theory for short oligonucleotide arrays. Journal of Computational Biology, 12, 882–893.

    Article  PubMed  CAS  Google Scholar 

  • Zippel, R., Gnesutta, N., Matus-Leibovitch, N., Mancinelli, E., Saya, D., Vogel, Z., et al. (1997). Ras-GRF, the activator of Ras, is expressed preferentially in mature neurons of the central nervous system. Brain Research. Molecular Brain Research, 48, 140–144.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Sturani, for critical comments and useful discussion. This work was supported by grants from MIUR to N. Gnesutta (PRIN 2005) and FIRB-Neuroscienze (PRO-NEURO) to E. Martegani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Zippel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavagni, P., Indrigo, M., Colombo, G. et al. Identification of Novel RasGRF1 Interacting Partners by Large-Scale Proteomic Analysis. J Mol Neurosci 37, 212–224 (2009). https://doi.org/10.1007/s12031-008-9118-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9118-y

Keywords

Navigation