Skip to main content
Log in

Involvement of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and its Receptors in the Mechanism of Antidepressant Action

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Recent studies have suggested antidepressant involvement in synaptic plasticity, possibly mediated by neurotrophins and neuropeptides. Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide and neuromodulator. Since its discovery, PACAP has been extensively investigated with regard to its neurotrophic properties including regulation of brain-derived neurotrophic factor (BDNF) expression, a neurotrophin postulated to be involved in the mechanism of antidepressant action and etiology of affective disorders. Using real-time polymerase chain reaction (PCR) technique, we demonstrate in this paper a robust upregulation of BDNF messenger RNA (mRNA) expression in rat primary cortical neurons following a 6-hour incubation with PACAP, and subsequently elevated BDNF expression after prolonged treatment. Additional experiments were conducted to evaluate the effects of antidepressants on the expression of PACAP, its receptors and BDNF. In rat hippocampal neurons, prolonged (72-hour) treatment with selective serotonin reuptake inhibitors paroxetine and citalopram significantly up-regulated BDNF and PACAP expression and down-regulated PACAP receptor (PAC1 and VPAC2) expression; the tricyclic antidepressant imipramine had an opposite effect. These alterations in BDNF expression correlated negatively with PAC1 and VPAC2 expression, and positively with PACAP mRNA levels. Thus, our findings suggest the possible involvement of PACAP signaling in the neuronal plasticity induced by antidepressant treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Altar, C. A. (1999). Neurotrophins and depression. Trends in Pharmacological Sciences, 20, 59–61. doi:10.1016/S0165-6147(99)01309-7.

    Article  PubMed  CAS  Google Scholar 

  • Arimura, A., & Shioda, S. (1995). Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: Neuroendocrine and endocrine interaction. Frontiers in Neuroendocrinology, 16, 53–88. doi:10.1006/frne.1995.1003.

    Article  PubMed  CAS  Google Scholar 

  • Aydemir, O., Deveci, A., & Taneli, F. (2005). The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: A preliminary study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29, 261–265. doi:10.1016/j.pnpbp.2004.11.009.

    Article  CAS  Google Scholar 

  • Bohman, B. D., Karbowski, M. J., & Halaris, A. E. (1982). Central cholinergic effects of tricyclic antidepressants in mouse. Archives Internationales de Pharmacodynamie et de Therapie, 255, 68–80.

    PubMed  CAS  Google Scholar 

  • Castren, E. (2005). Is mood chemistry? Nature Reviews. Neuroscience, 6, 241–246. doi:10.1038/nrn1629.

    Article  PubMed  CAS  Google Scholar 

  • Cauvin, A., Robberecht, P., De Neef, P., Gourlet, P., Vandermeers, A., Vandermeers-Piret, M. C., et al. (1991). Properties and distribution of receptors for pituitary adenylate cyclase activating peptide (PACAP) in rat brain and spinal cord. Regulatory Peptides, 35, 161–173. doi:10.1016/0167-0115(91)90478-Y.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J. F., & Young, L. T. (2001). Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biological Psychiatry, 50, 260–265. doi:10.1016/S0006-3223(01)01083-6.

    Article  PubMed  CAS  Google Scholar 

  • Coppell, A. L., Pei, Q., & Zetterstrom, T. S. (2003). Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology, 44, 903–910. doi:10.1016/S0028-3908(03)00077-7.

    Article  PubMed  CAS  Google Scholar 

  • da Penha Berzaghi, M., Cooper, J., Castren, E., Zafra, F., Sofroniew, M., Thoenen, H., et al. (1993). Cholinergic regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT-3) mRNA levels in the developing rat hippocampus. The Journal of Neuroscience, 13, 3818–3826.

    PubMed  Google Scholar 

  • Duman, R. S. (2004). Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Medicine, 5, 11–25. doi:10.1385/NMM:5:1:011.

    Article  PubMed  CAS  Google Scholar 

  • Duman, R. S., Heninger, G. R., & Nestler, E. J. (1997). A molecular and cellular theory of depression. Archives of General Psychiatry, 54, 597–606.

    PubMed  CAS  Google Scholar 

  • Duman, R. S., Malberg, J., Nakagawa, S., & D’Sa, C. (2000). Neuronal plasticity and survival in mood disorders. Biological Psychiatry, 48, 732–739. doi:10.1016/S0006-3223(00)00935-5.

    Article  PubMed  CAS  Google Scholar 

  • Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59, 1116–1127. doi:10.1016/j.biopsych.2006.02.013.

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi, Y., Rao, J. S., Rizavi, H. S., Kotowski, J., Conley, R. R., Roberts, R. C., et al. (2003). Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects. Archives of General Psychiatry, 60, 273–282. doi:10.1001/archpsyc.60.3.273.

    Article  PubMed  CAS  Google Scholar 

  • Frechilla, D., Garcia-Osta, A., Palacios, S., Cenarruzabeitia, E., & Del Rio, J. (2001). BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuroreport, 12, 919–923. doi:10.1097/00001756-200104170-00011.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, W. J. (2000). Neurotrophins induce death of hippocampal neurons via the p75 receptor. The Journal of Neuroscience, 20, 6340–6346.

    PubMed  CAS  Google Scholar 

  • Georg, B., & Fahrenkrug, J. (2000). Pituitary adelylate cyclase-activating peptide is an activator of vasoactive intestinal polypeptide gene transcription in human neuroblastoma cells. Brain Research. Molecular Brain Research, 79, 67–76. doi:10.1016/S0169-328X(00)00101-7.

    Article  PubMed  CAS  Google Scholar 

  • Gervasoni, N., Aubry, J. M., Bondolfi, G., Osiek, C., Schwald, M., Bertschy, G., et al. (2005). Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology, 51, 234–238. doi:10.1159/000085725.

    Article  PubMed  CAS  Google Scholar 

  • Gonul, A. S., Akdeniz, F., Taneli, F., Donat, O., Eker, C., & Vahip, S. (2005). Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. European Archives of Psychiatry and Clinical Neuroscience, 255, 381–386. doi:10.1007/s00406-005-0578-6.

    Article  PubMed  Google Scholar 

  • Gottschall, P. E., Tatsuno, I., Miyata, A., & Arimura, A. (1990). Characterization and distribution of binding sites for the hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide. Endocrinology, 127, 272–277.

    PubMed  CAS  Google Scholar 

  • Izaguirre, V., Fernandez-Fernandez, J. M., Cena, V., & Gonzalez-Garcia, C. (1997). Tricyclic antidepressants block cholinergic nicotinic receptors and ATP secretion in bovine chromaffin cells. FEBS Letters, 418, 39–42. doi:10.1016/S0014-5793(97)01343-4.

    Article  PubMed  CAS  Google Scholar 

  • Karege, F., Perret, G., Bondolfi, G., Schwald, M., Bertschy, G., & Aubry, J. M. (2002). Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Research, 109, 143–148. doi:10.1016/S0165-1781(02)00005-7.

    Article  PubMed  CAS  Google Scholar 

  • Kotani, S., Yamauchi, T., Teramoto, T., & Ogura, H. (2006). Pharmacological evidence of cholinergic involvement in adult hippocampal neurogenesis in rats. Neuroscience, 142, 505–514. doi:10.1016/j.neuroscience.2006.06.035.

    Article  PubMed  CAS  Google Scholar 

  • Lam, H. C., Takahashi, K., Ghatei, M. A., Kanse, S. M., Polak, J. M., & Bloom, S. R. (1990). Binding sites of a novel neuropeptide pituitary-adenylate-cyclase-activating polypeptide in the rat brain and lung. European Journal of Biochemistry, 193, 725–729. doi:10.1111/j.1432-1033.1990.tb19392.x.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, M. H., Hay-Schmidt, A., Ronn, L. C., & Mikkelsen, J. D. (2008). Temporal expression of brain-derived neurotrophic factor (BDNF) mRNA in the rat hippocampus after treatment with selective and mixed monoaminergic antidepressants. European Journal of Pharmacology, 578, 114–122. doi:10.1016/j.ejphar.2007.08.050.

    Article  PubMed  CAS  Google Scholar 

  • Malkesman, O., Maayan, R., Weizman, A., & Weller, A. (2006). Aggressive behavior and HPA axis hormones after social isolation in adult rats of two different genetic animal models for depression. Behavioural Brain Research, 175, 408–414. doi:10.1016/j.bbr.2006.09.017.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Turrillas, R., Del Rio, J., & Frechilla, D. (2005). Sequential changes in BDNF mRNA expression and synaptic levels of AMPA receptor subunits in rat hippocampus after chronic antidepressant treatment. Neuropharmacology, 49, 1178–1188. doi:10.1016/j.neuropharm.2005.07.006.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, A., Arimura, A., Dahl, R. R., Minamino, N., Uehara, A., Jiang, L., et al. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical and Biophysical Research Communications, 164, 567–574. doi:10.1016/0006-291X(89)91757-9.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, A., Jiang, L., Dahl, R. D., Kitada, C., Kubo, K., Fujino, M., et al. (1990). Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochemical and Biophysical Research Communications, 170, 643–648. doi:10.1016/0006-291X(90)92140-U.

    Article  PubMed  CAS  Google Scholar 

  • Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., & Monteggia, L. M. (2002). Neurobiology of depression. Neuron, 34, 13–25. doi:10.1016/S0896-6273(02)00653-0.

    Article  PubMed  CAS  Google Scholar 

  • Onoue, S., Ohshima, K., Endo, K., Yajima, T., & Kashimoto, K. (2002). PACAP protects neuronal PC12 cells from the cytotoxicity of human prion protein fragment 106–126. FEBS Letters, 522, 65–70. doi:10.1016/S0014-5793(02)02886-7.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger, C., & Duman, R. S. (2008). Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 33, 88–109.

    Article  PubMed  CAS  Google Scholar 

  • Rana, B., McMorn, S. O., Reeve, H. L., Wyatt, C. N., Vaughan, P. F., & Peers, C. (1993). Inhibition of neuronal nicotinic acetylcholine receptors by imipramine and desipramine. European Journal of Pharmacology, 250, 247–251. doi:10.1016/0014-2999(93)90388-X.

    Article  PubMed  CAS  Google Scholar 

  • Sairanen, M., Lucas, G., Ernfors, P., Castren, M., & Castren, E. (2005). Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. The Journal of Neuroscience, 25, 1089–1094. doi:10.1523/JNEUROSCI.3741-04.2005.

    Article  PubMed  CAS  Google Scholar 

  • Sherwood, N. M., Krueckl, S. L., & McRory, J. E. (2000). The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocrine Reviews, 21, 619–670. doi:10.1210/er.21.6.619.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, E., Hashimoto, K., Okamura, N., Koike, K., Komatsu, N., Kumakiri, C., et al. (2003). Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biological Psychiatry, 54, 70–75. doi:10.1016/S0006-3223(03)00181-1.

    Article  PubMed  CAS  Google Scholar 

  • Shintani, N., Suetake, S., Hashimoto, H., Koga, K., Kasai, A., Kawaguchi, C., et al. (2005). Neuroprotective action of endogenous PACAP in cultured rat cortical neurons. Regulatory Peptides, 126, 123–128. doi:10.1016/j.regpep.2004.08.014.

    Article  PubMed  CAS  Google Scholar 

  • Shioda, S. (2000). Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors in the brain. Kaibogaku Zasshi, 75, 487–507.

    PubMed  CAS  Google Scholar 

  • Somogyvari-Vigh, A., & Reglodi, D. (2004). Pituitary adenylate cyclase activating polypeptide: A potential neuroprotective peptide. Current Pharmaceutical Design, 10, 2861–2889. doi:10.2174/1381612043383548.

    Article  PubMed  CAS  Google Scholar 

  • Suda, K., Smith, D. M., Ghatei, M. A., Murphy, J. K., & Bloom, S. R. (1991). Investigation and characterization of receptors for pituitary adenylate cyclase-activating polypeptide in human brain by radioligand binding and chemical cross-linking. The Journal of Clinical Endocrinology and Metabolism, 72, 958–964.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A., & Vaudry, H. (2000). Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions. Pharmacological Reviews, 52, 269–324.

    PubMed  CAS  Google Scholar 

  • Vinet, J., Carra, S., Blom, J. M., Brunello, N., Barden, N., & Tascedda, F. (2004). Chronic treatment with desipramine and fluoxetine modulate BDNF, CaMKKalpha and CaMKKbeta mRNA levels in the hippocampus of transgenic mice expressing antisense RNA against the glucocorticoid receptor. Neuropharmacology, 47, 1062–1069.

    Article  PubMed  CAS  Google Scholar 

  • Waschek, J. A. (2002). Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Developmental Neuroscience, 24, 14–23. doi:10.1159/000064942.

    Article  PubMed  CAS  Google Scholar 

  • Weber, C. C., Eckert, G. P., & Muller, W. E. (2006). Effects of antidepressants on the brain/plasma distribution of corticosterone. Neuropsychopharmacology, 31, 2443–2448. doi:10.1038/sj.npp.1301076.

    Article  PubMed  CAS  Google Scholar 

  • Yaka, R., He, D. Y., Phamluong, K., & Ron, D. (2003). Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. The Journal of Biological Chemistry, 278, 9630–9638. doi:10.1074/jbc.M209141200.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, R., Mitoma, M., Sugita, A., Hori, H., Okamoto, T., Umene, W., et al. (2007). Effects of paroxetine or milnacipran on serum brain-derived neurotrophic factor in depressed patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31, 1034–1037. doi:10.1016/j.pnpbp.2007.03.001.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Pinhasov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichenstein, M., Rehavi, M. & Pinhasov, A. Involvement of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and its Receptors in the Mechanism of Antidepressant Action. J Mol Neurosci 36, 330–338 (2008). https://doi.org/10.1007/s12031-008-9116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9116-0

Keywords

Navigation