Skip to main content
Log in

Performance of PAC1-R Heterozygous Mice in Memory Tasks-II

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

An involvement of pituitary adenylate cyclase activating polypeptide-specific receptor type 1 (PAC1-R) in behavioral performance of retrieval of memory upon the stimulation of perception of sensory modality was investigated in mice. Eighteen heterozygous (−/+) transgenic mutant PAC1-R-deficient mice {(−/+) mice} and 18 wild-type (+/+) mice of littermates {(+/+) mice} as a control were used. No homozygous (−/−) transgenic mutant PAC1-R-deficit mouse was bred in our colony. It was observed that; (1) changing a single alley in the multiple mazes interfered with retrieval of memory in both (−/+) mice and (+/+) mice, and they made considerable errors; (2) a rotation of the multiple mazes for 180° in relation to the geomagnetic field made also considerable errors, but in only (+/+) mice and not in (−/+) mice; and (3) an exposure for perception of fear signals made also considerable errors, but in only (+/+) mice and not in (−/+) mice. It is inferred that PAC1-R may play a gating role in passage permitting through perception of geomagnetic orientation and fear signals, but not perception of visual orientation, and it regulates behavioral performance in retrieval of memory in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adamik, A., & Telegdy, G. (2005). Effects of pituitary adenylate cyclase activating polypeptide (PACAP) on extinction of active avoidance learning in rats: involvement of neurotransmitters. Regulatory Peptide, 127, 55–62. doi:10.1016/j.regpep.2004.10.015.

    Article  CAS  Google Scholar 

  • Adey, W. R., Dunlop, C. W., & Hendrix, C. E. (1960). Hippocampal slow waves, distribution and phase relationships in the course of approach learning. AMA Archives of Neurology, 3, 74–90.

    CAS  Google Scholar 

  • Adey, W. R., Walter, D. O., & Hendrix, C. E. (1961). Computer techniques in correlation and spectral analysis of cerebral slow waves during discriminative behavior. Experimental Neurology, 3, 501– 524. doi:10.1016/S0014-4886(61)80002-2.

    Article  PubMed  CAS  Google Scholar 

  • Alexinsky, T. (2001). Differential effect of thalamic and cortical lesions on memory system in the rat. Behavioural Brain Research, 122, 175–191. doi:10.1016/S0166-4328(01)00182-6.

    Article  PubMed  CAS  Google Scholar 

  • Altemus, M. (2006). Sex differences in depression and anxiety disorders: Potential biological determinations. Hormones and Behavior, 56, 534–538. doi:10.1016/j.yhbeh.2006.06.031.

    Article  Google Scholar 

  • Andreoletti, C., Veratti, B. W., & Lachman, M. E. (2006). Age differences in the relationship between anxiety and recall. Aging & Mental Health, 10, 267–271. doi:10.1080/13607860500409773.

    Article  Google Scholar 

  • Arimura, A. (1998). Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Japanese Journal of Physiology, 48, 303–331. doi:10.2170/jjphysiol.48.301.

    Article  Google Scholar 

  • Bierman, E. J., Comijs, H. C., Jonker, C., & Beekman, A. T. (2005). Effects of anxiety versus depression on cognition in later life. American Journal of Geriatric Psychiatry, 13, 686–693. doi:10.1176/appi.ajgp.13.8.686.

    Article  PubMed  CAS  Google Scholar 

  • Binhi, V. N. (2006). Stochastic dynamics of magnetosomes and a mechanism of biological orientation in the geomagnetic field. Bioelectomagnetics, 27, 58–63. doi:10.1002/bem.20178.

    Article  CAS  Google Scholar 

  • Blackstad, T. W. (1967). Cortical grey matter. A correlation of light and electron microscopic data. In H., & Hyden (Eds.), Neuron (pp. 49–118). Elsevier: Amsterdam.

    Google Scholar 

  • Charney, D. S., & Deutch, A. (1996). A functional neuroanatomy of anxiety and fear: implications for the pathophysiology and treatment of anxiety disorder. Critical Reviews in Neurobiology, 10, 419–446.

    PubMed  CAS  Google Scholar 

  • Chasteen, A. L., Bhattacharyya, S., Horhota, M., Tam, R., & Hasher, L. (2005). How feelings of stereotype threat older adults’ memory performance. Experimental Aging Research, 31, 235–260. doi:10.1080/03610730590948177.

    Article  PubMed  Google Scholar 

  • Chausac, P. M., Miyashita, Y., & Rolls, E. T. (1989). Responses of hippocampus formation in the monkey related to delayed spatial responses and object-place memory tasks. Behavioural Brain Research, 33, 229–240. doi:10.1016/S0166-4328(89)80118-4.

    Article  Google Scholar 

  • Chen, G. H., Wang, C., Yangcheng, H. Y., Liu, R. Y., & Zhou, J. N. (2007). Age-related changes in anxiety are task-specific in the senescence-accelerated prone mouse 8. Physiology and Behavior, 91, 644–651. doi:10.1016/j.physbeh.2007.03.023.

    Article  PubMed  CAS  Google Scholar 

  • Chrobak, J. J., & Buzzaki, G. (1994). Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampus sharp waves in the behaving rat. Journal of Neuroscience, 14, 6160–6170.

    PubMed  CAS  Google Scholar 

  • Collingridge, G. L., Kehl, S. J., & Mc Lennan, H. (1983). Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. Journal of Physiology, 334, 33–46.

    PubMed  CAS  Google Scholar 

  • Crabbe, J. C., Wahlsten, D., & Dudek, B. C. (1999). Genetics of mouse behavior: Interaction with laboratory environment. Science, 284, 1670–1672. doi:10.1126/science.284.5420.1670.

    Article  PubMed  CAS  Google Scholar 

  • de Seville, D. F., & Buno, W. (2003). Presynaptic inhibition of Schaffer collateral synapses by stimulation of hippocampus cholinergic afferent fibers. European Journal of Neuroscience, 17, 555–558. doi:10.1046/j.1460-9568.2003.02490.x.

    Article  Google Scholar 

  • Deptula, D., Singh, R., & Pomara, N. (1993). Aging, emotional states, and memory. American Journal of Psychiatray, 150, 429–434.

    CAS  Google Scholar 

  • Evans, D. I., Jones, R. S., & Woodhall, G. (2001). Differential actions of PKA and PKC in the regulation of glutamate release by group III mGluRs in the entorhinal cortex. Journal of Neurophysiololgy, 85, 571–579.

    CAS  Google Scholar 

  • Frake, M. J., Muhelm, R., & Phillips, J. B. (2006). Magnetic maps in animals; a theory comes of age? Quarterly Review of Archaeology, 81, 327–347. doi:10.1086/511528.

    Google Scholar 

  • Frussa-Filho, R., Otoboni, J. R., Uema, F. T., & SA-Roche, L. C. (1991). Evaluation of memory and anxiety in rats observed in the elevated plus-maze: Effects of age and isolation. Brazilian Journal of Medical and Biological Research, 24(7), 725–728.

    PubMed  CAS  Google Scholar 

  • Gottlieb, D. I., & Cowan, W. H. (1972). On the axonal distribution of axonal terminals containing spherical and flattened synaptic vesicles in the hippocampus and dentate guys of the rat and cat. Zeitschrift für Zellforschung, 129, 413–429. doi:10.1007/BF00307297.

    Article  CAS  Google Scholar 

  • Hamlyn, L. H. (1963). An electron microscopic study of pyramidal neurons in the Amnnon’s horns of the rabbit. Journal of Anatomy, 97, 189–201.

    PubMed  CAS  Google Scholar 

  • Hannibal, J. (2002). Pituitary adenylate cyclase-activating peptide in the rat central nervous system: An immunohistochemical and in situ hybridization study. Journal of Comparative Neurology, 453, 389–417. doi:10.1002/cne.10418.

    Article  PubMed  CAS  Google Scholar 

  • Hess, T. M., Auman, C., Colcombe, S. J., & Kahhal, T. A. (2003). The impact of stereotype threat on age differences in memory performance. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 58, 3–11.

    Google Scholar 

  • Huang, C. C., & Hsu, K. S. (2004). Local protein synthesis and GABAB receptors regulate the reversibility of long-term potentiation at murine hippocampus mossy fibre-CA3 synapses. Journal of Physiology, 561.1, 91–108. doi:10.1113/jphysiol.2004.072546.

    Article  Google Scholar 

  • Hussain, R. J., Stumpo, D. J., Blackshear, P. J., Lenox, R. H., Abel, T., & McNamara, R. K. (2006). Myristoylated alanine rich C kinase substrate (MARCKS) heterozygous mutant mice exhibit deficit in hippocampus mossy fiber-CA3 long-term potentiation. Hippocampus, 16, 495–503. doi:10.1002/hipo.20177.

    Article  PubMed  CAS  Google Scholar 

  • Ikegaya, Y., Yamada, M., Fukuda, T., Kuroyanagi, H., Shirasawa, T., & Nishiyama, N. (2001). Aberrant synaptic transmission in the hippocampus CA3 region and cognitive deterioration in protein-repair enzyme-deficient mice. Hippocampus, 11, 287–298. doi:10.1002/hipo.1043.

    Article  PubMed  CAS  Google Scholar 

  • Inanaga, K., & Ohyama, S. (2006). Treatment of behavioral and psychological symptoms in dementia with Yokukan-San Case Report. Bull Chikusuikai Neuroinform Hospital, 25, 15–24.

    Google Scholar 

  • Jamen, F., Persson, K., Berrand, G., Rodriguez-Henche, N., Puech, R., Bockerr, J., et al. (2000). PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. Journal of Clinical Investigation, 105, 1307–1315. doi:10.1172/JCI9387.

    Article  PubMed  CAS  Google Scholar 

  • Jones, R. S. G. (1993). Entorhinal–hippocampus connections: a speculative view of their function. Trends in Neurosciences, 16, 58–63. doi:10.1016/0166–2236(93)90018-H.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. T., & Reed, R. R. (1989). Golf: an olfactory neuron-specific G-protein involved in odorant signal transduction. Science, 244, 790–795. doi:10.1126/science.2499043.

    Article  PubMed  CAS  Google Scholar 

  • Kaluev, A. V., & Nutt, D. D. (2004). New directions in GABAnergic pharmacology of anxiety and depression. Eáksperimental¢naâ i Kliničeskaâ Farmakologiâ, 67, 3–7.

    CAS  Google Scholar 

  • Leung, J. W., & Xue, H. (2003). GABAnergic functions and depression: form classical therapies to herbal medicine. Current Drug Targets—CNS & Neurological Disorders, 2, 363–374. doi:10.2174/1568007033482715.

    Article  CAS  Google Scholar 

  • Li, J., Nilsson, L. G., & Wu, Z. (2004). Effects of age and anxiety on episodic memory: selectivity and variability. Scandinavian Journal of Psychology, 45, 123–129. doi:10.1111/j.1467-9450.2004.00387.x.

    Article  PubMed  Google Scholar 

  • Maren, S., Ajronov, G., & Fanselow, M. S. (1996). Retrograde abolition of conditional fear after exitotoxic lesions in the basolateral amygdale of rats: absence of a temporal gradient. Behavioral Neuroscience, 110, 718–726. doi:10.1037/0735-7044.110.4.718.

    Article  PubMed  CAS  Google Scholar 

  • Masuda, Y., Murai, S., Saito, H., Odashima, J., & Itoh, T. (1996). A New method for estimating memory in mice using spontaneous learning behavior and its application to the multiple maze, the T-mazes and the radial maze. Methods and Findings in Experimental Clinical Pharmacology, 18(Suppl. A), 25–30.

    Google Scholar 

  • Matsuyama, S., Matsumoto, A., Hashimoto, H., Shintani, N., & Baba, A. (2003). Impaired long-term potentiation in vivo in the dentate gyrus of pituitary adenylate cyclase activating polypeptide (PACAP) or PACAP type 1 receptor-mutant mice. Neuroreport, 14, 2095–2098. doi:10.1097/00001756-200311140-00017.

    Article  PubMed  CAS  Google Scholar 

  • McNamura, R. K., Stumpo, D. J., Morel, L. M., Lewis, M. H., Wakeland, E. K., Blackshear, P. J., et al. (1998). Effect Of reduced myristoylated alanine-rich C kinase substrate expression on hippocampal mossy fiber development and spatial learning in mutant mice: transgenic rescue and interaction with gene background. Proceedings of the National Academy of Sciences of the United States of America, 95, 14517–14522. doi:10.1073/pnas.95.24.14517.

    Article  Google Scholar 

  • Miyagawa, H., Hasegawa, M., Fukuta, T., Amano, M., Yamada, K., & Nabeshima, T. (1998). Dissociation of impairment between spatial memory, and motor function and emotional behavior in aged rats. Behavioural Brain Research, 91, 73–81. doi:10.1016/S0166-4328(97)00105-8.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita, Y., Rolls, E. T., Chausac, P. M., Niki, H., & Feigenbaum, J. D. (1989). Activity of hippocampus formation neurons in the monkey related to a conditional spatial response tasks. Journal of Neurophysiology, 61, 669–678.

    PubMed  CAS  Google Scholar 

  • Mohler, H., Fritschy, J. M., Vogt, K., Crestant, F., & Rudolph, U. (2005). Pathophysiology and pharmacology of GABA(A) receptors. Handbook of Experimental Pharmacology, 169, 225–247.

    Article  PubMed  Google Scholar 

  • Mojak, K., & Pitkanen, A. (2003). Activation of the amygdale-entorhinal pathway in fear-condition in rat. European Journal of Neuroscience, 18, 1652–1659. doi:10.1046/j.1460-9568.2003.02854.x.

    Article  Google Scholar 

  • Moore, K. A., Nicoll, R. A., & Schmitz, D. (2003). Adenosine gates synaptic plasticity at hippocampus mossy fiber synapses. Proceedings of the National Academy of Sciences of the United States of America, 100, 14397–14402. doi:10.1073/pnas.1835831100.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, K. (1999). Auditory spatial discriminatory and mnemonic neurons in rat posterior parietal cortex. Journal of Neurophysiology, 82, 2503–2517.

    PubMed  CAS  Google Scholar 

  • Nakamura, T., & Gold, G. H. (1987). A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature, 325, 442–444. doi:10.1038/325442a0.

    Article  PubMed  CAS  Google Scholar 

  • Nicot, A., Otto, T., Brabet, P., & DiCicco-Bloom, E. M. (2004). Altered social behavior in pituitary adenylate cyclase activating polypeptide type 1-receptor deficient mice. Journal of Neuroscience, 24, 8786–8795. doi:10.1523/JNEUROSCI.1910-04.2004.

    Article  PubMed  CAS  Google Scholar 

  • Okada, M., Zhu, G., Yoshida, S., Hirose, S., & Kaneko, S. (2004). Protein kinase associated with gating and closing transmission mechanisms in temporoammonic pathway. Neuropharmacology, 47, 485–504. doi:10.1016/j.neuropharm.2004.04.019.

    Article  PubMed  CAS  Google Scholar 

  • Olson, C. (2002). Distribution and effects of PACAP, VIP, nitric oxide and GABA in the gut of the African clawed frog Xenopus laevis. Journal of Experimental Biology, 205, 1123–1134.

    Google Scholar 

  • Olton, D. S. (1979). Mazes, maps, and memory. American Psychologist, 34, 583–596. doi:10.1037/0003-066X.34.7.583.

    Article  PubMed  CAS  Google Scholar 

  • Otto, T., & Eichenbaum, H. (1992). Neuronal activity in the hippocampus during delayed non-match to sample performance in rats: evidence for hippocampus processing in recognition memory. Hippocampus, 2, 323–334. doi:10.1002/hipo.450020310.

    Article  PubMed  CAS  Google Scholar 

  • Otto, C., Kovalchuk, Y., Wolfer, D. P., Gass, P., Martin, M., Zuschrater, W., et al. (2001a). Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type 1 receptor-deficient mice. Journal of Neuroscience, 21, 5520–5527.

    PubMed  CAS  Google Scholar 

  • Otto, C., Martin, M., Wolfer, D. P., Lipp, H.-P., Maldonado, R., & Schutz, G. (2001b). Altered emotional behavior in PACAP-type-1-receptor-deficient mice. Molecular Brain Research, 92, 78–84. doi:10.1016/S0169-328X(01)00153-X.

    Article  PubMed  CAS  Google Scholar 

  • Otto, C., Zuschratter, W., Gass, W., & Schutz, G. (1999). Presynaptic location of the PACAP-type1-receptor in hippocampus and cerebella mossy fibers. Molecular Brain Research, 66, 163–174. doi:10.1016/S0169-328X(99)00010-8.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G., & Watson, C. (1986). The rat brain in stereotaxic coordinates. San Diego, CA: Academic Press, New York.

    Google Scholar 

  • Petrulis, A., Alvarez, P., & Eichenbaum, H. (2005). Neural correlates of social odor recognition and the representation of individual distinctive social odors within entorhinal cortex and ventral subiculum. Neuroscience, 130, 259–274. doi:10.1016/j.neuroscience.2004.09.001.

    Article  PubMed  CAS  Google Scholar 

  • Pilc, A., & Nowak, G. (2005). GABAnergic hypothesis of anxiety and depression: focus on GABA-B receptors. Drugs Today (Barcelona), 41, 755–766. doi:10.1358/dot.2005.41.11.904728.

    Article  CAS  Google Scholar 

  • Price, J. L. (2005). Free will versus survival: brain systems that underlie intrinsic constrains on behavior. Journal of Comparative Neurology, 5, 132–139. doi:10.1002/cne.20750.

    Article  Google Scholar 

  • Rolls, E. T., Miyashita, Y., Cahusac, P. M., Kesner, R. P., Niki, H., Feigenbaum, J. D., et al. (1989). Hippocampal neurons in the monkey with activity related to the place in which a stimulus is shown. Journal of Neuroscience, 9, 1835–1845.

    PubMed  CAS  Google Scholar 

  • Sauvage, M., Brabet, P., Holsboer, F., Bockaert, J., & Streckler, T. (2000). Mild deficits in mice lacking pituitary adenylate cyclase activating polypeptide receptor type 1 (PAC1) performing on memory tasks. Molecular Brain Research, 84, 79–89. doi:10.1016/S0169-328X(00)00219-9.

    Article  PubMed  CAS  Google Scholar 

  • Shackman, A. J., Sarinopoulos, I., Maxwell, J. S., Pizzagalli, D. A., Lavric, A., & Davidson, R. J. (2006). Anxiety selectively disrupts visuospatial working memory. Emotion, 6, 40–61. doi:10.1037/1528-3542.6.1.40.

    Article  PubMed  Google Scholar 

  • Skoglosa, Y., Patrone, C., & Lindholm, D. (1999). Pituitary adenylate cyclase activating peptide is expressed by developing rat Purkinje cells and decreases the number of cerebella gamma-amino butyric acid positive neurons in culture. Neuroscience Letters, 23, 207–210. doi:10.1016/S0304-3940(99)00250-5.

    Article  Google Scholar 

  • Talnov, A. N., Quian Quiroga, R., Meier, M., Matsumoto, G., & Brankack, J. (2003). Entorhinal inputs to dentate gyrus are activated mainly by conditioned events with long time intervals. Hippocampus, 13, 755–765. doi:10.1002/hipo.10126.

    Article  PubMed  Google Scholar 

  • Thompson, K. J., Orfila, J. E., Achanta, P., & Martinez, J. L. (2003). Gene expression associated with in vivo induction of early phase-long-term potentiation (LTP) in the hippocampus mossy fiber-cornus ammois AC3 pathway. Cellular and Molecular Biology (Nolsy-le-grand), 49, 1281–1287.

    CAS  Google Scholar 

  • Toriizuka, K. (2006). Investigation of the anxiolytic effects of Kampo formulations used for used to treat menopausal psychotic syndrome in women. In proceeding of 7th WHO Collaborating Center for Aging International Meeting on Complementary and Alternative Medicine-Beyond regional variation toward consensus

  • Trevino, M., & Gutierrez, R. (2005). The GABAergic projection of the dentate gyrus to hippocampus area CA3 of the rat: pre- and postsynaptic actions after seizure. Journal of Physiology, 567, 939–949. doi:10.1113/jphysiol.2005.092064.

    Article  PubMed  CAS  Google Scholar 

  • Villacreas, E. C., Wong, S. T., Chavkin, C., & Storm, D. R. (1998). Type 1 adenylate cyclase mutant mice impaired mossy fiber long-term potentiation. Journal of Neuroscience, 18, 3186–3194.

    Google Scholar 

  • Westrum, L. E., & Blackstad, T. W. (1962). An electromicroscopic study of the stratum radiatum of the rat hippocampus (egio anterior, CA1) with particular emphasis on synaptology. Journal of Comparative Neurology, 113, 1–42.

    Google Scholar 

  • Wittechko, W., Munro, U., Ford, H., & Wittschko, R. (2006). Bird navigation what type of information does the magnetite-based receptors provide? Proceedings. Biological Sciences, 273, 2815–2820. doi:10.1098/rspb.2006.3651.

    Article  Google Scholar 

  • Yamamoto, A., Takagi, H., Kitamura, D., Tatsuoka, H., Nakano, H., Kawano, H., et al. (1998). Deficiency in protein l-isoaspartyl methyltransferase results in a fatal progressive epilepsy. Neuroscience, 18, 2063–2074.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author wishes to express his appreciation to Dr. Akira Arimura, Director of US–Japan Cooperative Biomedical Laboratories for providing PAC1-R-deficit mice for this study and Dr. Tomoji Nakamachi for breeding and genome analysis of PAC1-R-deficit mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyoshi Hagino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagino, N. Performance of PAC1-R Heterozygous Mice in Memory Tasks-II. J Mol Neurosci 36, 208–219 (2008). https://doi.org/10.1007/s12031-008-9101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9101-7

Keywords

Navigation