Skip to main content

Advertisement

Log in

Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) and Vasoactive Intestinal Peptide (VIP) Regulate Murine Neural Progenitor Cell Survival, Proliferation, and Differentiation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neural stem/progenitor cells (NPC) have gained wide interest over the last decade from their therapeutic potential, either through transplantation or endogenous replacement, after central nervous system (CNS) disease and damage. Whereas several growth factors and cytokines have been shown to promote NPC survival, proliferation, or differentiation, the identification of other regulators will provide much needed options for NPC self-renewal or lineage development. Although previous studies have shown that pituitary adenylate cyclase-activating polypeptide (PACAP)/vasoactive intestinal peptide (VIP) can regulate stem/progenitor cells, the responses appeared variable. To examine the direct roles of these peptides in NPCs, postnatal mouse NPC cultures were withdrawn from epidermal growth factor (EGF) and fibroblastic growth factor (FGF) and maintained under serum-free conditions in the presence or absence of PACAP27, PACAP38, or VIP. The NPCs expressed the PAC1(short)null receptor isoform, and the activation of these receptors decreased progenitor cell apoptosis more than 80% from TUNEL assays and facilitated proliferation more than fivefold from bromodeoxyuridine (BrdU) analyses. To evaluate cellular differentiation, replicate control and peptide-treated cultures were examined for cell fate marker protein and transcript expression. In contrast with previous work, PACAP peptides downregulated NPC differentiation, which appeared consistent with the proliferation status of the treated cells. Accordingly, these results demonstrate that PACAP signaling is trophic and can maintain NPCs in a multipotent state. With these attributes, PACAP may be able to promote endogenous NPC self-renewal in the adult CNS, which may be important for endogenous self-repair in disease and ageing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alvarez-Buylla, A., & Garcia-Verdugo, J. M. (2002). Neurogenesis in the adult subventricular zone. Journal of Neuroscience, 22, 629–634.

    PubMed  CAS  Google Scholar 

  • Arimura, A. (1998). Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuro-endocrine, endocrine, and nervous systems. Japanese Journal of Physiology, 8, 301–331. doi:10.2170/jjphysiol.48.301.

    Article  Google Scholar 

  • Bourgault, S., Vaudry, D., Botia, B., Couvineau, A., Laburthe, M., Vaudry, H., et al. (2008). Novel stable PACAP analogs with potent activity towards the PAC1 receptor. Peptides, 29, 919–932.

    Article  PubMed  CAS  Google Scholar 

  • Braas, K. M., & May, V. (1999). Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron NPY release through PAC1 receptor isoform activation of specific intracellular signaling pathways. Journal of Biological Chemistry, 274, 27702–27710. doi:10.1074/jbc.274.39.27702.

    Article  PubMed  CAS  Google Scholar 

  • Campard, P. K., Crochemore, C., Rene, F., Monnier, D., Koch, B., & Loeffler, J. P. (1997). PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. DNA and Cell Biology, 16, 323–333.

    Article  CAS  Google Scholar 

  • Carey, R. G., Li, B., & DiCicco-Bloom, E. (2002). Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity. Journal of Neuroscience, 22, 1583–1591.

    PubMed  CAS  Google Scholar 

  • Cavallaro, S., Copani, A., D’Agata, V., Musco, S., Petralia, S., Ventra, C., et al. (1996). Pituitary adenylate cyclase activating polypeptide prevents apoptosis in cultured cerebellar granule neurons. Molecular Pharmacology, 50, 60–66.

    PubMed  CAS  Google Scholar 

  • Cazillis, M., Gonzalez, B. J., Billardon, C., Lombet, A., Fraichard, A., Samarut, J., et al. (2004). VIP and PACAP induce selective neuronal differentiation of mouse embryonic stem cells. European Journal of Neuroscience, 19, 798–808. doi:10.1111/j.0953-816X.2004.03138.x.

    Article  PubMed  Google Scholar 

  • DiCicco-Bloom, E., Deutsch, P. J., Maltzman, J., Zhang, J., Pintar, J. E., Zheng, J., et al. (2000). Autocrine expression and ontogenetic function of the PACAP ligand/receptor system during sympathetic development. Developmental Biology, 219, 197–213. doi:10.1006/dbio.2000.9604.

    Article  PubMed  CAS  Google Scholar 

  • Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics & Development, 13, 543–550. doi:10.1016/j.gde.2003.08.012.

    Article  CAS  Google Scholar 

  • Gage, F. H. (2000). Mammalian neural stem cells. Science, 287, 1433–1438. doi:10.1126/science.287.5457.1433.

    Article  PubMed  CAS  Google Scholar 

  • Girard, B. M., Keller, E. T., Schutz, K. C., May, V., & Braas, K. M. (2004). Pituitary adenylate cyclase activating polypeptide and PAC1 receptor signaling increase Homer 1a expression in central and peripheral neurons. Regulatory Peptides, 123, 107–116. doi:10.1016/j.regpep.2004.05.024.

    Article  PubMed  CAS  Google Scholar 

  • Girard, B. M., May, V., Bora, S. H., Fina, F., & Braas, K. M. (2002). Regulation of neurotrophic peptide expression in sympathetic neurons: Quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regulatory Peptides, 109, 89–101. doi:10.1016/S0167-0115(02)00191-X.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, S. (2005). Stem and progenitor cell-based therapy of the human central nervous system. Nature Biotechnology, 23, 862–871. doi:10.1038/nbt1119.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, B. J., Basille, M., Vaudry, D., Fournier, A., & Vaudry, H. (1997). Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience, 78, 419–430. doi:10.1016/S0306-4522(96)00617-3.

    Article  PubMed  CAS  Google Scholar 

  • Gould, E., Beylin, A., Tanapat, P., Reeves, A., & Shors, T. J. (1999). Learning enhances adult neurogenesis in the hippocampal formation. Nature Neuroscience, 2, 260–265. doi:10.1038/6365.

    Article  PubMed  CAS  Google Scholar 

  • Gressens, P., Hill, J. M., Gozes, I., Fridkin, M., & Brenneman, D. E. (1993). Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos. Nature, 362, 155–158. doi:10.1038/362155a0.

    Article  PubMed  CAS  Google Scholar 

  • Jaworski, D. M., & Proctor, M. D. (2000). Developmental regulation of pituitary adenylate cyclase-activating polypeptide and PAC(1) receptor mRNA expression in the rat central nervous system. Developmental Brain Research, 120, 27–39. doi:10.1016/S0165-3806(99)00192-3.

    Article  PubMed  CAS  Google Scholar 

  • Kornack, D. R., & Rakic, P. (2001). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proceedings of the National Academy of Sciences of the United States of America, 98, 4752–4757. doi:10.1073/pnas.081074998.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenwalner, R. J., & Parent, J. M. (2006). Adult neurogenesis and the ischemic forebrain. Journal of Cerebral Blood Flow and Metabolism, 26, 1–20. doi:10.1038/sj.jcbfm.9600170.

    Article  PubMed  CAS  Google Scholar 

  • Lioudyno, M., Skoglösa, Y., Takei, N., & Lindholm, D. (1998). Pituitary adenylate cyclase-activating polypeptide (PACAP) protects dorsal root ganglion neurons from death and induces calcitonin gene-related peptide (CGRP) immunoreactivity in vitro. Journal of Neuroscience Research, 51, 243–256. doi:10.1002/(SICI)1097-4547(19980115)51:210.1002/(SICI)1097-4547(19980115)51:2<243::AID-JNR13>3.0.CO;2-9.

    Article  PubMed  CAS  Google Scholar 

  • Lu, N., & DiCicco-Bloom, E. (1997). Pituitary adenylate cyclase activating polypeptide is an autocrine inhibitor of mitosis in cultured cortical precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 94, 3357–3362. doi:10.1073/pnas.94.7.3357.

    Article  PubMed  CAS  Google Scholar 

  • Lu, N., Zhou, R., & DiCicco-Bloom, E. (1998). Opposing mitogenic regulation by PACAP in sympathetic and cerebral cortical precursors correlated with differential expression of PACAP receptor (PAC1-R) isoforms. Journal of Neuroscience Research, 53, 651–662. doi:10.1002/(SICI)1097-4547(19980915)53:6<651::AID-JNR3>3.0.CO;2-4.

    Article  PubMed  CAS  Google Scholar 

  • Martino, G., & Pluchino, S. (2006). The therapeutic potential of neural stem cells. Nature Reviews. Neuroscience, 7, 395–406. doi:10.1038/nrn1908.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, A., Rönnholm, H., Holmberg, J., Lundh, H., Heidrich, J., Zachrisson, O., et al. (2004). PACAP promotes neural stem cell proliferation in adult mouse brain. Journal of Neuroscience Research, 76, 205–215. doi:10.1002/jnr.20038.

    Article  PubMed  CAS  Google Scholar 

  • Morio, H., Tatsuno, I., Hirai, A., Tamura, Y., & Saito, Y. (1996). Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Research, 741, 82–88. doi:10.1016/S0006-8993(96)00920-1.

    Article  PubMed  CAS  Google Scholar 

  • Nakatomi, H., Kuriu, T., Okabe, S., Yamamoto, S., Hatano, O., Kawahara, N., et al. (2002). Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 110, 429–441. doi:10.1016/S0092-8674(02)00862-0.

    Article  PubMed  CAS  Google Scholar 

  • Nicot, A., & DiCicco-Bloom, E. (2001). Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proceedings of the National Academy of Sciences of the United States of America, 98, 4758–4763. doi:10.1073/pnas.071465398.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, K. M., Chaverra, M., Hapner, S. J., Nelson, B. R., Todd, V., Zigmond, R. E., et al. (2004). PACAP promotes sensory neuron differentiation: Blockade by neurotrophic factors. Molecular and Cellular Neurosciences, 25, 629–641. doi:10.1016/j.mcn.2003.12.004.

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto, M., Furuta, A., Aoki, S., Kudo, Y., Miyakawa, H., & Wada, K. (2007). PACAP/PAC1 autocrine system promotes proliferation and astrogenesis in neural progenitor cells. Glia, 55, 317–327. doi:10.1002/glia.20461.

    Article  PubMed  Google Scholar 

  • Ohta, S., Gregg, C., & Weiss, S. (2006). Pituitary adenylate cyclase-activating polypeptide regulates forebrain neural stem cells and neurogenesis in vitro and in vivo. Journal of Neuroscience Research, 84, 1177–1186. doi:10.1002/jnr.21026.

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki, H., Nakamachi, T., Dohi, K., Aizawa, Y., Takaki, A., Hodoyama, K., et al. (2006). Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proceedings of the National Academy of Sciences of the United States of America, 103, 7488–7493. doi:10.1073/pnas.0600375103.

    Article  PubMed  CAS  Google Scholar 

  • Okano, H., Sakaguchi, M., Ohki, K., Suzuki, N., & Sawamoto, K. (2007). Regeneration of the central nervous system using endogenous repair mechanisms. Journal of Neurochemistry, 102, 1459–1465. doi:10.1111/j.1471-4159.2007.04674.x.

    Article  PubMed  CAS  Google Scholar 

  • Pantaloni, C., Brabet, P., Bilanges, B., Dumuis, A., Houssami, S., Spengler, D., et al. (1996). Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. Journal of Biological Chemistry, 271, 22146–22151. doi:10.1074/jbc.271.36.22146.

    Article  PubMed  CAS  Google Scholar 

  • Przywara, D. A., Kulkarni, J. S., Wakade, T. D., Leontiev, D. V., & Wakade, A. R. (1998). Pituitary adenylate cyclase-activating polypeptide and nerve growth factor use the proteasome to rescue nerve growth factor-deprived sympathetic neurons cultured from chick embryos. Journal of Neurochemistry, 71, 1889–1897.

    PubMed  CAS  Google Scholar 

  • Sahay, A., & Hen, R. (2007). Adult hippocampal neurogenesis in depression. Nature Neuroscience, 10, 1110–1115. doi:10.1038/nn1969.

    Article  PubMed  CAS  Google Scholar 

  • Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., et al. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805–809. doi:10.1126/science.1083328.

    Article  PubMed  CAS  Google Scholar 

  • Sharpless, N. E., & DePinho, R. A. (2007). How stem cells age and why this makes us grow old. Nature Reviews. Molecular Cell Biology, 8, 703–713. doi:10.1038/nrm2241.

    Article  PubMed  CAS  Google Scholar 

  • Sherwood, N. M., Krueckl, S. L., & McRory, J. E. (2000). The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocrine Reviews, 21, 619–670. doi:10.1210/er.21.6.619.

    Article  PubMed  CAS  Google Scholar 

  • Sievertzon, M., Wirta, V., Mercer, A., Frisén, J., & Lundeberg, J. (2005). Epidermal growth factor (EGF) withdrawal masks gene expression differences in the study of pituitary adenylate cyclase-activating polypeptide (PACAP) activation of primary neural stem cell proliferation. BMC Neuroscience, 6, 55. doi:10.1186/1471-2202-6-55.

    Article  PubMed  CAS  Google Scholar 

  • Sohur, U. S., Emsley, J. G., Mitchell, B. D., & Macklis, J. D. (2006). Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 361, 1477–1497. doi:10.1098/rstb.2006.1887.

    Article  PubMed  CAS  Google Scholar 

  • Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P. H., et al. (1993). Differential signal transduction by five splice variants of the PACAP receptor. Nature, 365, 170–175. doi:10.1038/365170a0.

    Article  PubMed  CAS  Google Scholar 

  • Takei, N., Skoglosa, Y., & Lindholm, D. (1998). Neurotrophic and neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on mesencephalic dopaminergic neurons. Journal of Neuroscience Research, 54, 698–706. doi:10.1002/(SICI)1097-4547(19981201)54:5<698::AID-JNR15>3.0.CO;2-5.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, J., Koshimura, K., Murakami, Y., Sohmiya, M., Yanaihara, N., & Kato, Y. (1997). Neuronal protection from apoptosis by pituitary adenylate cyclase-activating polypeptide. Regulatory Peptides, 72, 1–8. doi:10.1016/S0167-0115(97)01038-0.

    Article  PubMed  CAS  Google Scholar 

  • Taupin, P. (2006). Adult neural stem cells, neurogenic niches, and cellular therapy. Stem Cell Reviews, 2, 213–219. doi:10.1007/s12015-006-0049-0.

    Article  PubMed  Google Scholar 

  • Uchida, D., Arimura, A., Somogyvari-Vigh, A., Shioda, S., & Banks, W. A. (1996). Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Research, 736, 280–286. doi:10.1016/0006-8993(96)00716-0.

    Article  PubMed  CAS  Google Scholar 

  • Ueki, T., Tanaka, M., Yamashita, K., Mikawa, S., Qiu, Z., Maragakis, N. J., et al. (2003). A novel secretory factor, Neurogenesin-1, provides neurogenic environmental cues for neural stem cells in the adult hippocampus. Journal of Neuroscience, 23, 11732–11740.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Anouar, Y., Fournier, A., & Vaudry, H. (1998). Pituitary adenylate cyclase activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase pathway. Neuroscience, 84, 801–812. doi:10.1016/S0306-4522(97)00545-9.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A., & Vaudry, H. (2000). Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions. Pharmacological Reviews, 52, 269–324.

    PubMed  CAS  Google Scholar 

  • Villalba, M., Bockaert, J., & Journot, L. (1997). Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. Journal of Neuroscience, 17, 83–90.

    PubMed  CAS  Google Scholar 

  • Waschek, J. A. (1996). VIP and PACAP receptor-mediated actions on cell proliferation and survival. Annals of the New York Academy of Sciences, 805, 290–300.

    Article  PubMed  CAS  Google Scholar 

  • Waschek, J. A., Casillas, R. A., Nguyen, T. B., DiCicco-Bloom, E. M., Carpenter, E. M., & Rodriguez, W. I. (1998). Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: Potential role in patterning and neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 95, 9602–9607. doi:10.1073/pnas.95.16.9602.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, J., Ohba, M., Ohno, F., Kikuyama, S., Nakamura, M., Nakaya, K., et al. (2006). Pituitary adenylate cyclase-activating polypeptide-induced differentiation of embryonic neural stem cells into astrocytes is mediated via the beta isoform of protein kinase C. Journal of Neuroscience Research, 84, 1645–1655. doi:10.1002/jnr.21065.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, N., & Krieglstein, K. (1995). Phenotypic development of neonatal rat chromaffin cells in response to adrenal growth factors and glucocorticoids: Focus on pituitary adenylate cyclase activating polypeptide. Neuroscience Letters, 200, 207–210. doi:10.1016/0304-3940(95)12116-L.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C. -L., Zou, Y., He, W., Gage, F. H., & Evans, R. M. (2008). A role for adult TLX-positive neural stem cells in learning and behavior. Nature, 451, 1004–1007. doi:10.1038/nature06562.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Molecular Biology Core Facility at the University of Vermont Neuroscience Center for Biomedical Research Excellence (COBRE) for the assistance with some PCR assays, Jeffrey Spees from Vermont Stem Cell Core for the preparation of murine NPCs, and Mari Tobita and Hillel Panitch for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Mao-Draayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scharf, E., May, V., Braas, K.M. et al. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) and Vasoactive Intestinal Peptide (VIP) Regulate Murine Neural Progenitor Cell Survival, Proliferation, and Differentiation. J Mol Neurosci 36, 79–88 (2008). https://doi.org/10.1007/s12031-008-9097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9097-z

Keywords

Navigation