Skip to main content

Advertisement

Log in

Novel N-terminal Cleavage of APP Precludes Aβ Generation in ACAT-Defective AC29 Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

A common pathogenic event that occurs in all forms of Alzheimer’s disease is the progressive accumulation of amyloid β-peptide (Aβ) in brain regions responsible for higher cognitive functions. Inhibition of acyl-coenzyme A: cholesterol acyltransferase (ACAT), which generates intracellular cholesteryl esters from free cholesterol and fatty acids, reduces the biogenesis of the Aβ from the amyloid precursor protein (APP). Here we have used AC29 cells, defective in ACAT activity, to show that ACAT activity steers APP either toward or away from a novel proteolytic pathway that replaces both α and the amyloidogenic β cleavages of APP. This alternative pathway involves a novel cleavage of APP holoprotein at Glu281, which correlates with reduced ACAT activity and Aβ generation in AC29 cells. This sterol-dependent cleavage of APP occurs in the endosomal compartment after internalization of cell surface APP. The resulting novel C-terminal fragment APP-C470 is destined to proteasomal degradation limiting the availability of APP for the Aβ generating system. The proportion of APP molecules that are directed to the novel cleavage pathway is regulated by the ratio of free cholesterol and cholesteryl esters in cells. These results suggest that subcellular cholesterol distribution may be an important regulator of the cellular fate of APP holoprotein and that there may exist several competing proteolytic systems responsible for APP processing within the endosomal compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abad-Rodriguez, J., Ledesma, M. D., Craessaerts, K., Perga, S., Medina, M., Delacourte, A., et al. (2004). Neuronal membrane cholesterol loss enhances amyloid peptide generation. Journal of Cell Biology, 167, 953–960. doi:10.1083/jcb.200404149.

    Article  PubMed  CAS  Google Scholar 

  • Abbenante, G., Kovacs, D. M., Leung, D. L., Craik, D. J., Tanzi, R. E., & Fairlie, D. P. (2000). Inhibitors of beta-amyloid formation based on the beta-secretase cleavage site. Biochemical and Biophysical Research Communications, 268, 133–135. doi:10.1006/bbrc.2000.2098.

    Article  PubMed  CAS  Google Scholar 

  • Boerwinkle, E., Visvikis, S., Welsh, D., Steinmetz, J., Hanash, S. M., & Sing, C. F. (1987). The use of measured genotype information in the analysis of quantitative phenotypes in man. II. The role of the apolipoprotein E polymorphism in determining levels, variability, and covariability of cholesterol, beta-lipoprotein, and triglycerides in a sample of unrelated individuals. American Journal of Medical Genetics, 27, 567–582. doi:10.1002/ajmg.1320270310.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. S., & Goldstein, J. L. (1999). A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proceedings of the National Academy of Sciences of the United States of America, 96, 11041–11048. doi:10.1073/pnas.96.20.11041.

    Article  PubMed  CAS  Google Scholar 

  • Burns, M., Gaynor, K., Olm, V., Mercken, M., LaFrancois, J., Wang, L., et al. (2003). Presenilin redistribution associated with aberrant cholesterol transport enhances beta-amyloid production in vivo. Journal of Neuroscience, 23, 5645–5649.

    PubMed  CAS  Google Scholar 

  • Cadigan, K. M., Heider, J. G., & Chang, T. Y. (1988). Isolation and characterization of Chinese hamster ovary cell mutants deficient in acyl-coenzyme A:cholesterol acyltransferase activity. Journal of Biological Chemistry, 263, 274–282.

    PubMed  CAS  Google Scholar 

  • Chang, T. Y., Chang, C. C., Ohgami, N., & Yamauchi, Y. (2006). Cholesterol sensing, trafficking, and esterification. Annual Review of Cell and Developmental Biology, 22, 129–157. doi:10.1146/annurev.cellbio.22.010305.104656.

    Article  PubMed  CAS  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families [see comments]. Science, 261, 921–923. doi:10.1126/science.8346443.

    Article  PubMed  CAS  Google Scholar 

  • Cutler, R. G., Pedersen, W. A., Camandola, S., Rothstein, J. D., & Mattson, M. P. (2002). Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Annals of Neurology, 52, 448–457. doi:10.1002/ana.10312.

    Article  PubMed  CAS  Google Scholar 

  • Ehnholm, C., Lukka, M., Kuusi, T., Nikkila, E., & Utermann, G. (1986). Apolipoprotein E polymorphism in the Finnish population: gene frequencies and relation to lipoprotein concentrations. Journal of Lipid Research, 27, 227–235.

    PubMed  CAS  Google Scholar 

  • Fassbender, K., Simons, M., Bergmann, C., Stroick, M., Lutjohann, D., Keller, P., et al. (2001). Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 98, 5856–5861. doi:10.1073/pnas.081620098.

    Article  PubMed  CAS  Google Scholar 

  • Fitzky, B. U., Moebius, F. F., Asaoka, H., Waage-Baudet, H., Xu, L., Xu, G., et al. (2001). 7-Dehydrocholesterol-dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome. Journal of Clinical Investigation, 108, 905–915.

    PubMed  CAS  Google Scholar 

  • Frears, E. R., Stephens, D. J., Walters, C. E., Davies, H., & Austen, B. M. (1999). The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport, 10, 1699–1705. doi:10.1097/00001756-199906030-00014.

    Article  PubMed  CAS  Google Scholar 

  • Glenner, G. G., & Wong, C. W. (1984). Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications, 120, 885–890. doi:10.1016/S0006-291X(84)80190-4.

    Article  PubMed  CAS  Google Scholar 

  • Grimm, M. O., Grimm, H. S., Patzold, A. J., Zinser, E. G., Halonen, R., Duering, M., et al. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nature Cell Biology, 7, 1118–1123.

    Article  PubMed  CAS  Google Scholar 

  • Haass, C. (2004). Take five-BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO Journal, 23, 483–488. doi:10.1038/sj.emboj.7600061.

    Article  PubMed  CAS  Google Scholar 

  • Hutter-Paier, B., Huttunen, H. J., Puglielli, L., Eckman, C. B., Kim, D. Y., Hofmeister, A., et al. (2004). The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease. Neuron, 44, 227–238. doi:10.1016/j.neuron.2004.08.043.

    Article  PubMed  CAS  Google Scholar 

  • Huttunen, H. J., Greco, C., & Kovacs, D. M. (2007a). Knockdown of ACAT-1 reduces amyloidogenic processing of APP. FEBS letters, 581, 1688–1692. doi:10.1016/j.febslet.2007.03.056.

    Article  PubMed  CAS  Google Scholar 

  • Huttunen, H. J., Guenette, S. Y., Peach, C., Greco, C., Xia, W., Kim, D. Y., et al. (2007b). HtrA2 regulates beta-amyloid precursor protein (APP) metabolism through endoplasmic reticulum-associated degradation. Journal of Biological Chemistry, 282, 28285–28295. doi:10.1074/jbc.M702951200.

    Article  PubMed  CAS  Google Scholar 

  • Jarvik, G. P., Wijsman, E. M., Kukull, W. A., Schellenberg, G. D., Yu, C., & Larson, E. B. (1995). Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer’s disease: a case-control study. Neurology, 45, 1092–1096 Medline.

    PubMed  CAS  Google Scholar 

  • Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., & Drachman, D. A. (2000). Statins and the risk of dementia. Lancet, 356, 1627–1631. doi:10.1016/S0140-6736(00)03155-X.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Grzeschik, K. H., et al. (1987). The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325, 733–736. doi:10.1038/325733a0.

    Article  PubMed  CAS  Google Scholar 

  • Koudinov, A. R., Berezov, T. T., Kumar, A., & Koudinova, N. V. (1998). Alzheimer’s amyloid beta interaction with normal human plasma high density lipoprotein: Association with apolipoprotein and lipids. Clinica Chimica Acta, 270, 75–84. doi:10.1016/S0009-8981(97)00207-6.

    Article  CAS  Google Scholar 

  • Kuo, Y. M., Emmerling, M. R., Bisgaier, C. L., Essenburg, A. D., Lampert, H. C., Drumm, D., et al. (1998). Elevated low-density lipoprotein in Alzheimer’s disease correlates with brain A beta 1–42 levels. Biochemical and Biophysical Research Communications, 252, 711–715. doi:10.1006/bbrc.1998.9652.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. J., Liyanage, U., Bickel, P. E., Xia, W., Lansbury Jr., P. T., & Kosik, K. S. (1998). A detergent-insoluble membrane compartment contains A beta in vivo. Nature Medicine, 4, 730–734. doi:10.1038/nm0698-730.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Zerbinatti, C. V., Zhang, J., Hoe, H. S., Wang, B., Cole, S. L., et al. (2007). Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron, 56, 66–78. doi:10.1016/j.neuron.2007.08.008.

    Article  PubMed  CAS  Google Scholar 

  • Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V., & Simons, K. (1995). VIP21/caveolin is a cholesterol-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 92, 10339–10343. doi:10.1073/pnas.92.22.10339.

    Article  PubMed  CAS  Google Scholar 

  • Notkola, I. L., Sulkava, R., Pekkanen, J., Erkinjuntti, T., Ehnholm, C., Kivinen, P., et al. (1998). Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology, 17, 14–20. doi:10.1159/000026149.

    Article  PubMed  CAS  Google Scholar 

  • Parkin, E. T., Hussain, I., Karran, E. H., Turner, A. J., & Hooper, N. M. (1999). Characterization of detergent-insoluble complexes containing the familial Alzheimer’s disease-associated presenilins. Journal of Neurochemistry, 72, 1534–1543. doi:10.1046/j.1471-4159.1999.721534.x.

    Article  PubMed  CAS  Google Scholar 

  • Podlisny, M. B., Tolan, D. R., & Selkoe, D. J. (1991). Homology of the amyloid beta protein precursor in monkey and human supports a primate model for beta amyloidosis in Alzheimer’s disease. American Journal of Pathology, 138, 1423–1435.

    PubMed  CAS  Google Scholar 

  • Porter, J. A., Young, K. E., & Beachy, P. A. (1996). Cholesterol modification of hedgehog signaling proteins in animal development [see comments] [published erratum appears in Science 1996 Dec 6;274(5293):1597]. Science, 274, 255–259. doi:10.1126/science.274.5285.255.

    Article  PubMed  CAS  Google Scholar 

  • Puglielli, L., Konopka, G., Pack-Chung, E., Ingano, L. A., Berezovska, O., Hyman, B. T., et al. (2001). Acyl-coenzyme A: Cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nature Cell Biology, 3, 905–912. doi:10.1038/ncb1001-905.

    Article  PubMed  CAS  Google Scholar 

  • Puglielli, L., Tanzi, R. E., & Kovacs, D. M. (2003). Alzheimer’s disease: The cholesterol connection. Nature Neuroscience, 6, 345–351. doi:10.1038/nn0403-345.

    Article  PubMed  CAS  Google Scholar 

  • Refolo, L. M., Wittenberg, I. S., Friedrich Jr., V. L., & Robakis, N. K. (1991). The Alzheimer amyloid precursor is associated with the detergent-insoluble cytoskeleton. Journal of Neuroscience, 11, 3888–3897.

    PubMed  CAS  Google Scholar 

  • Refolo, L. M., Pappolla, M. A., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., et al. (2000). Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiology of Disease, 7, 321–331. doi:10.1006/nbdi.2000.0304.

    Article  PubMed  CAS  Google Scholar 

  • Refolo, L. M., Pappolla, M. A., LaFrancois, J., Malester, B., Schmidt, S. D., Thomas-Bryant, T., et al. (2001). A cholesterol-lowering drug reduces beta-amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 8, 890–899. doi:10.1006/nbdi.2001.0422.

    Article  PubMed  CAS  Google Scholar 

  • Runz, H., Rietdorf, J., Tomic, I., de Bernard, M., Beyreuther, K., Pepperkok, R., et al. (2002). Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. Journal of Neuroscience, 22, 1679–1689.

    PubMed  CAS  Google Scholar 

  • Schmechel, D. E., Saunders, A. M., Strittmatter, W. J., Crain, B. J., Hulette, C. M., Joo, S. H., et al. (1993). Increased amyloid ß-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90, 9649–9653. doi:10.1073/pnas.90.20.9649.

    Article  PubMed  CAS  Google Scholar 

  • Sever, N., Yang, T., Brown, M. S., Goldstein, J. L., & DeBose-Boyd, R. A. (2003). Accelerated degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-sensing domain. Molecular Cell, 11, 25–33. doi:10.1016/S1097-2765(02)00822-5.

    Article  PubMed  CAS  Google Scholar 

  • Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., & Simons, K. (1998). Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95, 6460–6464. doi:10.1073/pnas.95.11.6460.

    Article  PubMed  CAS  Google Scholar 

  • Tanzi, R. E., Gusella, J. F., Watkins, P. C., Bruns, G. A., St George-Hyslop, P., Van Keuren, M. L., et al. (1987). Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science, 235, 880–884. doi:10.1126/science.2949367.

    Article  PubMed  CAS  Google Scholar 

  • Thiele, C., Hannah, M. J., Fahrenholz, F., & Huttner, W. B. (2000). Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature Cell Biology, 2, 42–49. doi:10.1038/71366.

    Article  PubMed  CAS  Google Scholar 

  • Wollmer, M. A., Streffer, J. R., Tsolaki, M., Grimaldi, L. M., Lutjohann, D., Thal, D., et al. (2003). Genetic association of acyl-coenzyme A: Cholesterol acyltransferase with cerebrospinal fluid cholesterol levels, brain amyloid load, and risk for Alzheimer’s disease. Molecular Psychiatry, 8, 635–638. doi:10.1038/sj.mp.4001296.

    Article  PubMed  CAS  Google Scholar 

  • Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., & Siegel, G. (2000). Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Archives of Neurology, 57, 1439–1443. doi:10.1001/archneur.57.10.1439.

    Article  PubMed  CAS  Google Scholar 

  • Yang, T., Espenshade, P. J., Wright, M. E., Yabe, D., Gong, Y., Aebersold, R., et al. (2002). Crucial step in cholesterol homeostasis: Sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, 110, 489–500. doi:10.1016/S0092-8674(02)00872-3.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank T.Y. Chang and C.C.Y. Chang (Dartmouth Medical School, Hanover, NH, USA) for the gift of cholesterol mutant cell lines, J.H. Harwood (Pfizer, Groton, CT, USA) for providing us with the ACAT inhibitor CP-113,818, and D.J. Selkoe and W.Xia (Center for Neurological Diseases, Brigham and Women’s Hospital, Boston, MA, USA) for Aβ determinations. This work was supported by grants from the NIH–NINDS (D.M.K.), the Alzheimer’s Association (L.P.), Helsingin Sanomat Centennial Foundation (H.J.H.) and Maud Kuistila Foundation (H.J.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora M. Kovacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huttunen, H.J., Puglielli, L., Ellis, B.C. et al. Novel N-terminal Cleavage of APP Precludes Aβ Generation in ACAT-Defective AC29 Cells. J Mol Neurosci 37, 6–15 (2009). https://doi.org/10.1007/s12031-008-9088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9088-0

Keywords

Navigation