Skip to main content
Log in

Molecular Understanding of Copper and Iron Interaction with α-Synuclein by Fluorescence Analysis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

α-Synuclein aggregation is a hallmark pathological feature in Parkinson’s disease (PD). The conversion of α-synuclein from a soluble monomer to an insoluble fibril may underlie the neurodegeneration associated with PD. Redox-active metal ions such as iron (Fe) and copper (Cu) are known to enhance α-synuclein fibrillogenesis. In the present investigation, we analyzed the binding efficiency of Cu and Fe to α-synuclein by fluorescence studies. It is interesting to note that Cu and Fe showed differential binding pattern toward α-synuclein (wild type and A30P, A53T, and E46K mutant forms) as revealed by intrinsic tyrosine fluorescence, thioflavin-T fluorescence, 1-anilino-8-naphthalenesulfonate-binding studies, and scatchard plot analysis. The experimental data might prove useful in understanding the hierarchy of metals binding to α-synuclein and its role in neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  • Bharathi, Indi, S. S., & Rao, K. S. J. (2007). Copper and iron induced differential morphology of fibrils in α-synuclein: TEM study. Neuroscience Letters, 424, 78–82.

    Article  PubMed  CAS  Google Scholar 

  • Bharathi, & Rao, K. S. J. (2007). Thermodynamics imprinting reveals differential binding of metals to a-synuclein: Relevance to Parkinson’s disease. Biochemical and Biophysical Research Communications, 359, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., & Lansbury Jr., P. T. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: Implications for pathogenesis and therapy. Proceedings of the National Academy of Sciences of the USA, 97, 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Dexter, D. T., Carayon, A., Agid, F. J., Agid, Y., Wells, F. R., Daniel, S. E., et al. (1991). Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain, 114, 1953–1975.

    Article  PubMed  Google Scholar 

  • Eftink, M. R., & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Analytical Biochemistry, 114, 199–227.

    Article  PubMed  CAS  Google Scholar 

  • Goedert, M. (2001). α-synuclein and neurodegenerative diseases. Nature Reviews Neuroscience, 2, 492–501.

    Article  PubMed  CAS  Google Scholar 

  • Guilloreau, L., Damian, L., Coppel, Y., Mazarguil, H., Winterhalter, M., & Faller, P. (2006). Structural and thermodynamically properties of Cu (II) amyloid-beta16/28 complexes associated with Alzheimer’s disease. Journal of Biological Inorganic Chemistry, 11, 1024–1038.

    Article  PubMed  CAS  Google Scholar 

  • Iwai, A. E., Masliah, M., Yoshimoto, N., Ge, L., Flanagan, H. A., de Silva, A., et al. (1995). The precursor protein of non-Ab component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron, 14, 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Jakes, R., Spillantini, M. G., & Goedert, M. (1994). Identification of two distinct synucleins from human brain. FEBS Letters, 345, 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Jankowska, T. K., Rajewska, A., Jankowska, E., Wisniewska, K., & Grzonka, Z. (2006). Products of Cu (II)-catalyzed oxidation of the N-terminal fragments of alpha-synuclein in the presence of hydrogen peroxide. Journal of Inorganic Biochemistry, 100, 1623–1631.

    Article  PubMed  CAS  Google Scholar 

  • Le Couteur, D. G., McLean, A. J., Taylor, M. C., Woodham, B. L., & Board, P. G. (1999). Pesticides and Parkinson’s disease. Biomedicine & Pharmacotherapy, 53, 122–130.

    Article  Google Scholar 

  • Maji, S. K., Amsden, J. J., Rothschild, K. J., Condron, M. M., & Teplow, D. B. (2005). Conformational dynamics of amyloid beta-protein assembly probed using intrinsic fluorescence. Biochemistry, 44, 13365–13376.

    Article  PubMed  CAS  Google Scholar 

  • Maroteaux, L., Campanelli, J. T., & Scheller, R. H. (1998). Synuclein: A neuron specific protein localized to the nucleus and presynaptic nerve terminal. Journal of Neuroscience, 8, 2804–2815.

    Google Scholar 

  • Matulis, D., Baumann, C. G., Bloomfield, V. A., & Lovrien, R. E. (1999). 1-Anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers, 49, 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Matulis, D., & Lovrien, R. (1998). 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophysical Journal, 74, 422–429.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, N., Schmidt, R. E., & Galvin, J. E. (2006). The alpha-synuclein mutation E46K promotes aggregation in cultured cells. Experimental Neurology, 197, 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas, A. F., & Gilmanshin, R. I. (1991). Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers, 31, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., & Goedert, M. (1998). Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences of the USA, 95, 6469–6473.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Schimdt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). α-synuclein in Lewy bodies. Nature, 388, 839–840.

    Article  PubMed  CAS  Google Scholar 

  • Sung, Y. H., Rospigliosi, C., & Eliezer, D. (2006). NMR mapping of copper binding sites in alpha-synuclein. Biochimica et Biophysica Acta, 1764, 5–12.

    PubMed  CAS  Google Scholar 

  • Tanner, C. M. (1989). The role of environmental toxins in the etiology of Parkinson’s disease. Trends in Neurosciences, 12, 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Uversky, V. N., Li, J., & Fink, A. L. (2001a). Evidence for a partially folded intermediate in α-synuclein fibril formation. Journal of Biological Chemistry, 276, 10737–10744.

    Article  PubMed  CAS  Google Scholar 

  • Uversky, V. N., Li, J., & Fink, A. L. (2001b). Metal-triggered structural transformation, aggregation and Fibrillation of Human α-synuclein, a possible molecular link between Parkinson’s disease and heavy metal exposure. Journal of Biological Chemistry, 276, 44284–44296.

    Article  PubMed  CAS  Google Scholar 

  • Yasui, M., Kihira, T., & Ota, K. (1992). Calcium, magnesium aluminium concentrations in Parkinson’s disease. Neurotoxicology, 13, 593–600.

    PubMed  CAS  Google Scholar 

  • Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55, 164–173.

    Article  PubMed  CAS  Google Scholar 

  • Zecca, L., Stroppolo, A., Gatti, A., Tampellini, D., Toscani, M., & Gallorini, M. (2004). The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proceedings of the National Academy of Sciences of the USA, 101, 9843–9848.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr. V. Prakash, Director, Central Food Technological Research Institute, Mysore for his support and encouragement. The authors profoundly thankful to Dr. Rivka Ravid, Senior Advisor, The Netherlands Academy of Science and Netherlands Brain Bank, The Netherlands for reviewing the manuscript and providing constructive comments. The authors thank Prof. Raghavan Varadarajan, Molecular Biophysics Unit, Indian Institute of Science, Bangalore for providing the facility. Bharathi is thankful to Council for Scientific and Industrial Research for awarding senior research fellowship. This work was supported by a grant from Department of Atomic Energy, through BNRS project, Mumbai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. J. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharathi, Rao, K.S.J. Molecular Understanding of Copper and Iron Interaction with α-Synuclein by Fluorescence Analysis. J Mol Neurosci 35, 273–281 (2008). https://doi.org/10.1007/s12031-008-9076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9076-4

Keywords

Navigation