Skip to main content
Log in

Granule Cell Survival is Deficient in PAC1−/− Mutant Cerebellum

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

PACAP exerts neuroprotective effects during development, especially in the cerebellum where PAC1 receptor and ligand are both expressed. However, while previous studies using PACAP injections in postnatal animals defined trophic effects of exogenous peptide, the role of endogenous PACAP remains unexplored. Here, we used PAC1−/− mice to investigate the role of PACAP receptor signaling in postnatal day 7 cerebellum. There was no difference in DNA synthesis in the cerebellar EGL of PAC1−/− compared to wild type animals, assessed using thymidine incorporation and BrdU immunohistochemistry. In contrast, we found that a significant proportion of newly generated neurons were eliminated before they successfully differentiated in the granule cell layer. In aggregate, these results suggest that endogenous PACAP plays an important role in cell survival during cerebellar development, through the activation of the PAC1 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

BrdU:

bromodeoxyuridine

EGL:

external germinal layer

IGL:

internal granule cell layer

MOL:

molecular layer

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PAC1:

PACAP-specific receptor 1

PAC1-/- :

PAC1-knockout mouse

PBS:

phosphate buffer saline

PFA:

paraformaldehyde

TCA:

trichloroacetic acid

Triton X100:

4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol

[3H]-Thy:

[3H]-thymidine

References

  • Abad, C., Gomariz, R. P., & Waschek, J. A. (2006). Neuropeptide mimetics and antagonists in the treatment of inflammatory disease: focus on VIP and PACAP. Current Topics in Medicinal Chemistry, 6, 151–163.

    Article  PubMed  CAS  Google Scholar 

  • Alavez, S., Blancas, S., & Morán, J. (2006). Effect of N-methyl-D-aspartate receptor blockade on caspase activation and neuronal death in the developing rat cerebellum. Neuroscience Letters, 404, 176–181.

    Article  PubMed  CAS  Google Scholar 

  • Allais, A., Burel, D., Isaac, E. R., et al. (2007). Altered cerebellar development in mice lacking pituitary adenylate cyclase-activating polypeptide. European Journal of Neuroscience, 25, 2604–2618.

    Article  PubMed  Google Scholar 

  • Altman, J. (1972a). Postnatal development of the cerebellar cortex in the rat. 3. Maturation of the components of the granular layer. Journal of Comparative Neurology, 145, 465–513.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J. (1972b). Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. Journal of Comparative Neurology, 145, 353–397.

    Article  PubMed  CAS  Google Scholar 

  • Basille, M., Falluel-Morel, A., Vaudry, D., et al. (2006). Ontogeny of PACAP receptors in the human cerebellum: perspectives of therapeutic applications. Regulatory Peptide, 137, 27–33.

    Article  CAS  Google Scholar 

  • Basille, M., Vaudry, D., Coulouarn, Y., et al. (2000). Comparative distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development. Journal of Comparative Neurology, 425, 495–509.

    Article  PubMed  CAS  Google Scholar 

  • Burke, K., Cheng, Y., Li, B., et al. (2006). Methylmercury elicits rapid inhibition of cell proliferation in the developing brain and decreases cell cycle regulator, cyclin E. Neurotoxicology, 27, 970–981.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, D. B., Galas, L., Jiang, Y., Raoult, E., Vaudry, D., & Komuro, H. (2007). Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate cyclase-activating polypeptide. Neuroscience, 146, 697–712.

    Article  PubMed  CAS  Google Scholar 

  • Carey, R. G., Li, B., & DiCicco-Bloom, E. (2002). Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity. Journal of Neuroscience, 22, 1583–1591.

    PubMed  CAS  Google Scholar 

  • Cheng, Y., Black, I. B., & DiCicco-Bloom, E. (2002). Hippocampal granule neuron production and population size are regulated by levels of bFGF. European Journal of Neuroscience, 15, 3–12.

    Article  PubMed  Google Scholar 

  • DiCicco-Bloom, E., Deutsch, P. J., Maltzman, J., et al. (2000). Autocrine expression and ontogenetic functions of the PACAP ligand/receptor system during sympathetic development. Developments in Biologicals, 219, 197–213.

    Article  CAS  Google Scholar 

  • DiCicco-Bloom, E., Lu, N., Pintar, J. E., & Zhang, J. (1998). The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Annals of the New York Academy of Sciences, 865, 274–289.

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug, J. (2006). PACAP–a multifacetted neuropeptide. Chronobiology International, 23, 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug, J., Hannibal, J., Honore, B., & Vorum, H. (2005). Altered calmodulin response to light in the suprachiasmatic nucleus of PAC1 receptor knockout mice revealed by proteomic analysis. Journal of Molecular Neuroscience, 25, 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Falluel-Morel, A., Chafai, M., Vaudry, D., et al. (2007). The neuropeptide pituitary adenylate cyclase-activating polypeptide exerts anti-apoptotic and differentiating effects during neurogenesis: focus on cerebellar granule neurones and embryonic stem cells. Journal of Neuroendocrinology, 19, 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Falluel-Morel, A., Vaudry, D., Aubert, N., et al. (2005). Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proceedings of the National Academy of Sciences of the United States of America, 102, 2637–2642.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, B. J., Basille, M., Vaudry, D., Fournier, A., & Vaudry, H. (1997). Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience, 78, 419–430.

    Article  PubMed  CAS  Google Scholar 

  • Harmar, T., & Lutz, E. (1994). Multiple receptors for PACAP and VIP. Trends in Pharmacological Sciences, 15, 97–99.

    Article  PubMed  CAS  Google Scholar 

  • Jamen, F., Persson, K., Bertrand, G., et al. (2000a). PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. Journal of Clinical Investigation, 105, 1307–1315.

    Article  PubMed  CAS  Google Scholar 

  • Jamen, F., Rodriguez-Henche, N., Pralong, F., et al. (2000b). PAC1 null females display decreased fertility. Annals of the New York Academy of Sciences, 921, 400–404.

    Article  PubMed  CAS  Google Scholar 

  • Lossi, L., Mioletti, S., & Merighi, A. (2002). Synapse-independent and synapse-dependent apoptosis of cerebellar granule cells in postnatal rabbits occur at two subsequent but partly overlapping developmental stages. Neuroscience, 112, 509–523.

    Article  PubMed  CAS  Google Scholar 

  • Lossi, L., Zagzag, D., Greco, M. A., & Merighi, A. (1998). Apoptosis of undifferentiated progenitors and granule cell precursors in the postnatal human cerebellar cortex correlates with expression of BCL-2, ICE, and CPP32 proteins. Journal of Comparative Neurology, 399, 359–372.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, C., Juarranz, Y., Abad, C., et al. (2005). Analysis of the role of the PAC1 receptor in neutrophil recruitment, acute-phase response, and nitric oxide production in septic shock. Journal of Leukocyte Biology, 77, 729–738.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D. K. (2006). The effects of PACAP on neural cell proliferation. Regulatory Peptide, 137, 50–57.

    Article  CAS  Google Scholar 

  • Miyata, A., Arimura, A., Dahl, R. R., et al. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical and Biophysical Research Communications, 164, 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Nicot, A., & DiCicco-Bloom, E. (2001). Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proceedings of the National Academy of Sciences of the United States of America, 98, 4758–4763.

    Article  PubMed  CAS  Google Scholar 

  • Nicot, A., Otto, T., Brabet, P., & Dicicco-Bloom, E. M. (2004). Altered social behavior in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. Journal of Neuroscience, 24, 8786–8795.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, H. S., Hannibal, J., & Fahrenkrug, J. (1998). Expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the postnatal and adult rat cerebellar cortex. Neuroreport, 9, 2639–2642.

    Article  PubMed  CAS  Google Scholar 

  • Oomman, S., Strahlendorf, H., Dertien, J., & Strahlendorf, J. (2006). Bergmann glia utilize active caspase-3 for differentiation. Brain Research, 1078, 19–34.

    Article  PubMed  CAS  Google Scholar 

  • Raff, M. C., Barres, B. A., Burne, J. F., Coles, H. S., Ishizaki, Y., & Jacobson, M. D. (1993). Programmed cell death and the control of cell survival: lessons from the nervous system. Science, 262, 695–700.

    Article  PubMed  CAS  Google Scholar 

  • Suh, J., Lu, N., Nicot, A., Tatsuno, I., & DiCicco-Bloom, E. (2001). PACAP is an anti-mitogenic signal in developing cerebral cortex. Nature Neuroscience, 4, 123–124.

    Article  PubMed  CAS  Google Scholar 

  • Tao, Y., Black, I. B., & DiCicco-Bloom, E. (1996). Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). Journal of Comparative Neurology, 376, 653–663.

    Article  PubMed  CAS  Google Scholar 

  • Tatsuno, I., Somogyvari-Vigh, A., & Arimura, A. (1994). Developmental changes of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor in the rat brain. Peptides, 15, 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Hamelink, C., Damadzic, R., Eskay, R. L., Gonzalez, B., & Eiden, L. E. (2005). Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides, 26, 2518–2524.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, J. P., Black, I. B., & DiCicco-Bloom, E. (1999). Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. Journal of Neuroscience, 19, 6006–6016.

    PubMed  CAS  Google Scholar 

  • Waschek, J. A., Casillas, R. A., Nguyen, T. B., DiCicco-Bloom, E. M., Carpenter, E. M., & Rodriguez, W. I. (1998). Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: potential role in patterning and neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 95, 9602–9607.

    Article  PubMed  CAS  Google Scholar 

  • Wood, K. A., Dipasquale, B., & Youle, R. J. (1993). In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron, 11, 621–632.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, C. J., Kikuyama, S., Shibanuma, M., et al. (2000). Cellular distribution of the splice variants of the receptor for pituitary adenylate cyclase-activating polypeptide (PAC(1)-R) in the rat brain by in situ RT-PCR. Molecular Brain Research, 75, 150–158.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH NS 32401. Anthony Falluel-Morel was a recipient of a Fellowship from La Fondation pour la Recherche Médicale (FRM-SPE20051105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel DiCicco-Bloom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falluel-Morel, A., Tascau, L.I., Sokolowski, K. et al. Granule Cell Survival is Deficient in PAC1−/− Mutant Cerebellum. J Mol Neurosci 36, 38–44 (2008). https://doi.org/10.1007/s12031-008-9066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9066-6

Keywords

Navigation