Skip to main content

Advertisement

Log in

Effects of PACAP on Survival and Renal Morphology in Rats Subjected to Renal Ischemia/Reperfusion

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) occurs and exerts a variety of biological functions in the nervous system and in the peripheral organs, including the urinary system. PACAP has protective effects against myeloma kidney injury and renal ischemia. Ischemia/reperfusion injury of the kidney is a major clinical problem, and based on the protective effects of PACAP in cerebral and cardiomyocyte ischemia, the aim of the present study was to evaluate the effects of a single intravenous PACAP injection on the survival and renal morphology after varying times of ischemia. Rats were subjected to renal artery clamping for 15, 30, 45, 60, or 75 min followed by reperfusion. PACAP (100 μg) was administered intravenously before arterial clamping. We found that a 15- or 30-min renal ischemia led to no renal dysfunction, and the kidneys showed normal appearance with no difference between PACAP- and saline-treated groups. Control rats with 45 min of ischemia had increased premature death rate and showed multifocal acute tubular atrophy, while a 60-min ischemia led to death of all control animals within a few days displaying severe, multifocal Grade II tubular atrophy. In contrast, all PACAP-treated animals survived with subtle morphological changes after the 45-min ischemia. After the 60-min ischemia, death rate was significantly lower in PACAP-treated rats compared to controls, and animals showed subtle focal tubular alteration. A 75-min ischemia was not performable in controls because of deaths before the termination of ischemia. PACAP-treated rats survived longer, but they also died after 5–10 days exhibiting severe focal tubular atrophy. In summary, our results clearly show that PACAP is able to prolong the renal ischemic time, decrease mortality, and attenuate tubular degeneration after renal ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abad, C., Gomariz, R. P., & Waschek, J. A. (2006). Neuropeptide mimetics and antagonists in the treatment of inflammatory disease: focus on VIP and PACAP. Current Topics in Medicinal Chemistry, 6, 151–163.

    Article  PubMed  CAS  Google Scholar 

  • Arimura, A. (2007). PACAP: The road to discovery. Peptides, 28, 1617–1619.

    Article  PubMed  CAS  Google Scholar 

  • Arimura, A., Li, M., & Batuman, V. (2006a). Potential protective action of pituitary adenylate cyclase activating polypeptide (PACAP38) on in vitro and in vivo models of myeloma kidney injury. Blood, 107, 661–668.

    Article  PubMed  CAS  Google Scholar 

  • Arimura, A., Li, M., & Batuman, V. (2006b). Treatment of renal failure associated with multiple myeloma and other diseases by PACAP-38. Annals of the New York Academy of Sciences, 1070, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Atlasz, T., Babai, N., Kiss, P., et al. (2007). Pituitary adenylate cyclase activating polypeptide is protective in bilateral carotid occlusion-induced retinal lesion in rats. General and Comparative Endocrinology, 153, 108–114.

    Article  PubMed  CAS  Google Scholar 

  • Banks, W. A., Uchida, D., Arimura, A., Somogyvari-Vigh, A., & Shioda, S. (1996). Transport of pituitary adenylate cyclase activating polypeptide across the blood–brain barrier and the prevention of ischemia-induced death of hippocampal neurons. Annals of the New York Academy of Sciences, 805, 270–277.

    PubMed  CAS  Google Scholar 

  • Braas, K. M., May, V., Zwara, P., et al. (2006). Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 290, 951–962.

    Google Scholar 

  • Danovitch, G. M. (2005). Handbook of kidney transplantation. Lippincott: Williams and Wilkins.

    Google Scholar 

  • Delgado, M., & Ganea, D. (2000). VIP and PACAP inhibit activation induced apoptosis in T lymphocytes. Annals of the New York Academy of Sciences, 921, 55–67.

    PubMed  CAS  Google Scholar 

  • Delgado, M., Garrido, E., Martinez, C., Leceta, J., & Gomariz, R. P. (1996). Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptides (PACAP27 and PACAP38) protect CD4+CD8+thymocytes from glucocorticoid-induced apoptosis. Blood, 12, 5152–5161.

    Google Scholar 

  • Fahrenkrug, J., & Hannibal, J. (1998). Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience, 83, 1261–1272.

    Article  PubMed  CAS  Google Scholar 

  • Faubel, S., & Edelstein, C. L. (2005). Caspases as drug targets in ischemic organ injury.. Current Drug TargetsEndocrinology and Metabolism Disorder, 5, 269–287.

    Article  CAS  Google Scholar 

  • Fekete, A., Vannay, A., Ver, A., et al. (2006). Sex differences in heat shock protein 72 expression and localization in rats following renal ischemia–reperfusion injury. American Journal of Physiology. Renal Physiology, 291, 806–811.

    Article  CAS  Google Scholar 

  • Gardiner, S. M., Rakhit, T., Kemp, P. A., March, J. E., & Bennett, T. (1994). Regional haemodynamic responses to pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in conscious rats. British Journal of Pharmacology, 111, 589–597.

    PubMed  CAS  Google Scholar 

  • Gasz, B., Racz, B., Roth, E., et al. (2006a). Pituitary adenylate cyclase activating polypeptide protects cardiomyocytes against oxidative stress-induced apoptosis. Peptides, 27, 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Gasz, B., Racz, B., Roth, E., et al. (2006b). PACAP inhibits oxidative stress-induced activation of MAP kinase dependent apoptotic pathway in cultured cardiomyocytes. Annals of the New York Academy of Sciences, 1070, 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Gomariz, R. P., Juarranz, Y., Abad, C., Arranz, A., Leceta, J., & Martinez, C. (2006). VIP-PACAP system in immunity: New insights for multitarget therapy. Annals of the New York Academy of Sciences, 1070, 51–74.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Canas, I., Rodriguez-Henche, N., Bolanos, O., Carmena, M. J., Prieto, J. C., & Juarranz, M. G. (2003). VIP and PACAP are autocrine factors that protect the androgen-independent prostate cancer cell line PC-3 from apoptosis induced by serum withdrawal. British Journal of Pharmacology, 139, 1050–1058.

    Article  PubMed  CAS  Google Scholar 

  • Harmar, A. J., Sheward, W. J., Morrison, C. F., Waser, B., Gugger, M., & Reubi, J. C. (2004). Distribution of the VPAC2 receptor in peripheral tissues of the mouse. Endocrinology, 145, 1203–1210.

    Article  PubMed  CAS  Google Scholar 

  • Hautmann, M., Friis, U. G., Desch, M., et al. (2007). Pituitary adenylate cyclase activating polypeptide stimulates renin secretion via activation of PAC1 receptors. Journal of the American Society of Nephrology, 18, 1150–1156.

    Article  PubMed  CAS  Google Scholar 

  • Helyes, Zs., Pozsgai, G., Borzsei, R., et al. (2007). Inhibitory effect of PACAP38 on acute neurogenic and non-neurogenic inflammation in the rat. Peptides, 28, 1847–1855.

    Article  PubMed  CAS  Google Scholar 

  • Herrera, G. M., Braas, K. M., May, V., & Vizzard, M. A. (2006). PACAP enhances mouse urinary bladder contractility and is upregulated in micturition reflex pathways after cystitis. Annals of the New York Academy of Sciences, 1070, 330–336.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, K. J., & Molitoris, B. A. (2000). Acute renal failure in the new millennium: Time to consider combination therapy. Seminars in Nephrology, 20, 4–19.

    PubMed  CAS  Google Scholar 

  • Lam, H. C., Takahashi, K., Ghatei, M. A., Kanse, S. M., Polak, J. M., & Bloom, S. R. (1990). Binding sites of a novel neuropeptide pituitary adenylate cyclase activating polypeptide in the rat brain and lung. European Journal of Biochemistry, 193, 725–729.

    Article  PubMed  CAS  Google Scholar 

  • Lauffer, J. M., Modlin, I. M., & Tang, L. H. (1999). Biological relevance of pituitary adenylate cyclase activating polypeptide (PACAP) in the gastrointestinal tract. Regulatory Peptides, 84, 1–12.

    Article  CAS  Google Scholar 

  • Lee, J., Park, H. J., Choi, H. S., et al. (1999). Gonadotropin stimulation of pituitary adenylate cyclase activating polypeptide (PACAP) messenger ribonucleic acid in the rat ovary and the role of PACAP as a follicle survival factor. Endocrinology, 140, 818–826.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Cortez, S., Nakamachi, T., Batuman, V., & Arimura, A. (2006). Pituitary adenylate cyclase activating polypeptide is a potent inhibitor of the growth of light chain-secreting human multiple myeloma cells. Cancer Research, 66, 8796–8803.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Maderdrut, J. L., Lertora, J. J., & Batuman, V. (2007). Intravenous infusion of pituitary adenylate cyclase activating polypeptide (PACAP) in a patient with multiple myeloma and myeloma kidney: a case study. Peptides, 28, 1891–1895.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Maderdru, J. L., Lertora, J. J., Arimura, A., & Batuman, V. (2008a). Renoprotection by pituitary adenylate cyclase activating polypeptide in multiple myeloma and other kidney diseases. Regulatory Peptides, 145, 24–32.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Hering-Smith, K. S., Simon, E. E., & Batuman, V. (2008b). Myeloma light chains induce epithelial–mesenchymal transition in human renal proximal tubule epithelial cells.. Nephrology Dialysis Transplantation, 23(3), 860–870.

    Article  CAS  Google Scholar 

  • Miyata, A., Arimura, A., Dahl, R. R., et al. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical and Biophysical Research Communications, 164, 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Nemeth, J., Reglodi, D., Pozsgai, G., et al. (2006). Effect of PACAP-38 on sensory neuropeptide release and neurogenic inflammation in rats and mice. Neuroscience, 143, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, S. F. (1994). PACAP-27 and PACAP-38: Vascular effects in the eye and some other tissues in the rabbit. European Journal of Pharmacology, 253, 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki, H., Nakamachi, T., Dohi, K., et al. (2006). Pituitary adenylate cyclase activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proceedings of the National Academy of Sciences of the United States of America, 103, 7488–7493.

    Article  PubMed  CAS  Google Scholar 

  • Oka, H., Jin, L., Kulig, E., Scheithauer, B. W., & Lloyd, R. V. (1996). Pituitary adenylate cyclase activating polypeptide inhibits transforming growth factor-b1-induced apoptosis in a human pituitary adenoma cell line. American Journal of Pathology, 155, 1893–1900.

    Google Scholar 

  • Peeters, K., Gerets, H. H., Princen, K., & Vandesande, F. (1999). Molecular cloning and expression of a chicken pituitary adenylate cyclase activating polypeptide receptor. Molecular Brain Research, 71, 244–255.

    Article  PubMed  CAS  Google Scholar 

  • Racz, B., Gasz, B., Borsiczky, B., et al. (2007a). Protective effects of pituitary adenylate cyclase activating polypeptide in endothelial cells against oxidative stress-induced apoptosis. General and Comparative Endocrinology, 153, 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Racz, B., Gallyas Jr., F., Kiss, P., et al. (2007b). Effects of pituitary adenylate cyclase activating polypeptide (PACAP) on the PKA-Bad-14-3-3 signaling pathway in glutamate-induced retinal injury in neonatal rats. Neurotoxicity Research, 12, 95–104.

    PubMed  CAS  Google Scholar 

  • Racz, B., Gasz, B., Gallyas Jr., F., et al. (2008). PKA-Bad-14-3-3 and Akt-Bad-14-3-3 signaling pathways are involved in the protective effects of PACAP against ischemia/reperfusion-induced cardiomyocyte apoptosis. Regulatory Peptides, 145, 105–115.

    Article  PubMed  CAS  Google Scholar 

  • Reglodi, D., Tamas, A., Lubics, A., Szalontay, L., & Lengvari, I. (2004). Morphological and functional effects of PACAP in a 6-hydroxydopamine-induced lesion of the substantia nigra in rats. Regulatory Peptides, 123, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Reglodi, D., Tamas, A., Somogyvari-Vigh, A., et al. (2002). Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides, 23, 2227–2234.

    Article  PubMed  CAS  Google Scholar 

  • Reubi, J. C. (2000). In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues. Clinical implications. Annals of the New York Academy of Sciences, 921, 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Riera, M., Torras, J., Cruzado, J. M., et al. (2001). The enhancement of endogenous cAMP with pituitary adenylate cyclase activating polypeptide protects rat kidney against ischemia through the modulation of inflammatory response. Transplantation, 72, 1217–1223.

    Article  PubMed  CAS  Google Scholar 

  • Sandgren, K., Lin, Z., & Ekblad, E. (2003). Differential effects of VIP and PACAP on survival of cultured adult rat myenteric neurons. Regulatory Peptides, 111, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Shioda, S., Ohtaki, H., Nakamachi, T., et al. (2006). Pleiotropic functions of PACAP in the CNS. Neuroprotection and neurodevelopment. Annals of the New York Academy of Sciences, 1070, 550–560.

    Article  PubMed  CAS  Google Scholar 

  • Shivers, B. D., Gorcs, T. J., Gottschall, P. E., & Arimura, A. (1991). Two high affinity binding sites for pituitary adenylate cyclase activating polypeptide have different tissue distributions. Endocrinology, 128, 3055–3065.

    PubMed  CAS  Google Scholar 

  • Somogyvari-Vigh, A., & Reglodi, D. (2004). Pituitary adenylate cyclase activating polypeptide: A potential neuroprotective peptide-review. Current Pharmaceutical Design, 10, 2861–2889.

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan, S. P., Huang, J. X., Cheung, M. C., & Goetzl, E. J. (1995). Structure, expression, and chromosomal localization of the type I human vasoactive intestinal peptide receptor gene. Proceedings of the National Academy of Sciences of the United States of America, 92, 2939–2943.

    Article  PubMed  CAS  Google Scholar 

  • Tamas, A., Zsombok, A., Farkas, O., et al. (2006). Postinjury administration of pituitary adenylate cyclase activating polypeptide (PACAP) attenuates traumatically induced axonal injury in rats. Journal of Neurotrauma, 23, 686–695.

    Article  PubMed  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Anouar, Y., Fournier, A., & Vaudry, H. (1998). Pituitary adenylate cyclase activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience, 84, 801–812.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A., & Vaudry, H. (2000). Pituitary adenylate cyclase activating polypeptide and its receptors: from structure to functions. Pharmacological Reviews, 52, 269–324.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Ravni, A., Wurtz, O., et al. (2006). Effects of PACAP in the local regulation of endocrine glands. In A. J. Kastin (Ed.) Handbook of biologically active peptides (pp. 867–874). London: Academic.

    Google Scholar 

  • Vizzard, M. A. (2000). Up-regulation of pituitary adenylate cyclase activating polypeptide in urinary bladder pathways after chronic cystitis. Journal of Comparative Neurology, 420, 335–348.

    Article  PubMed  CAS  Google Scholar 

  • Vizzard, M. A. (2006). Neurochemical plasticity and the role of neurotrophic factors in bladder reflex pathways after spinal cord injury. Progress in Brain Research, 152, 97–115.

    Article  PubMed  CAS  Google Scholar 

  • Warren, J. B., Donnelly, L. E., Cullen, S., et al. (1991). Pituitary adenylate cyclase activating polypeptide: a novel, long-lasting, endothelium-independent vasorelaxant. European Journal of Pharmacology, 197, 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Waschek, J. A. (2002). Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Developmental Neuroscience, 24, 14–23.

    Article  PubMed  CAS  Google Scholar 

  • Wei, Y., & Mojsov, S. (1996). Tissue specific expression of different human receptor types for pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide: implications for their role in human physiology. Journal of Neuroendocrinology, 8, 811–817.

    Article  PubMed  CAS  Google Scholar 

  • Zvara, P., Braas, K. M., May, V., & Vizzard, M. A. (2006). A role for pituitary adenylate cyclase activating polypeptide (PACAP) in detrusor hyperreflexia after spinal cord injury (SCI). Annals of the New York Academy of Sciences, 1070, 622–628.

    Article  PubMed  CAS  Google Scholar 

  • Zvarova, K., Dunleavy, J. D., & Vizzard, M. A. (2005). Changes in pituitary adenylate cyclase activating polypeptide expression in urinary pathways after spinal cord injury. Experimental Neurology, 192, 46–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian Science Research Fund (OTKA T046589, F 67830, K72592 and F 048908), MEDIPOLIS Pecs and ETT439/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Reglodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szakaly, P., Kiss, P., Lubics, A. et al. Effects of PACAP on Survival and Renal Morphology in Rats Subjected to Renal Ischemia/Reperfusion. J Mol Neurosci 36, 89–96 (2008). https://doi.org/10.1007/s12031-008-9064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9064-8

Keywords

Navigation