Skip to main content

Advertisement

Log in

Effects of Cell Cycle Inhibitors on Tau Phosphorylation in N2aTau3R Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neurofibrillary tangles are one of the pathologic hallmarks of Alzheimer’s disease (AD). They are composed of paired helical filaments (PHF) containing hyperphosphorylated forms of tau. Hyperphosphorylation of certain tau sites favors its dissociation from the microtubules (MT), interfering with axonal transport and compromising the function and viability of neurons. Reappearance of cell cycle proteins have been reported in neurons exhibiting tau aggregation, suggesting that an aberrant cell cycle occurs before neurons die. Cell cycle suppression in neurons is crucial to survival, thus prevention of progression through the cell cycle may offer a therapeutic approach. Using a neuroblastoma cell line overexpressing 3-repeat (3R) tau, we investigated the effects of cell cycle inhibitors on tau phosphorylation. G2/M phase inhibitors did not alter phosphorylation of tau at Ser-202 and Ser-396/404 at the lower doses, but did at higher doses. Ser-202 and Ser-396/404 are phosphorylation sites of early and late neurofibrillary tangles, respectively, in AD. Cisplatin, a G1 phase inhibitor, did not phosphorylate tau. Cyclophosphamide and phosphoramide mustard, DNA cross-linking agents, decreased tau phosphorylation at Ser-396/404 site, but increased phosphorylation at Ser-202. These studies demonstrate that the G2/M blockers have a dose-dependent effect on tau phosphorylation. This seems to be a consequence of both the disruption of MT-organization and MT-dynamics when doses are higher, but only a disruption of MT-dynamics with lower doses. These results are also in agreement with the lack of phosphorylation seen for cisplatin, another inhibitor that produces disruption of the MT-dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Amato, S. F., Swart, J. M., Berg, M., Wanebo, H. J., Mehta, S. R., & Chiles, T. C. (1998). Transient stimulation of the c-Jun-NH2-terminal kinase/activator protein 1 pathway and inhibition of extracellular signal-regulated kinase are early effects in paclitaxel-mediated apoptosis in human B lymphoblasts. Cancer Research, 58(2), 241–247.

    PubMed  CAS  Google Scholar 

  • Andorfer, C., Acker, C. M., Kress, Y., Hof, P. R., Duff, K., & Davies, P. (2005). Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. Journal of Neuroscience, 25(22), 5446–5454.

    Article  PubMed  CAS  Google Scholar 

  • Becvarova, P., Skorpikova, J., Janisch, R., & Novy, J. (2006). A Vinca alkaloid effect on microtubules of Hela cells. Scripta Medica (BRNO), 79(1), 19–34.

    CAS  Google Scholar 

  • Bhalla, K. N. (2003). Microtubule-targeted anticancer agents and apoptosis. Oncogene, 22(56), 9075–9086.

    Article  PubMed  CAS  Google Scholar 

  • Bharadwaj, R., & Yu, H. (2004). The spindle checkpoint, aneuploidy, and cancer. Oncogene, 23(11), 2016–2027.

    Article  PubMed  CAS  Google Scholar 

  • Billingsley, M. L., & Kincaid, R. L. (1997). Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochemical Journal, 323(Pt 3), 577–591.

    PubMed  CAS  Google Scholar 

  • Blagosklonny, M. V., & Fojo, T. (1999). Molecular effects of paclitaxel: myths and reality (a critical review). International Journal of Cancer, 83(2), 151–156.

    Article  CAS  Google Scholar 

  • Blagosklonny, M. V., Giannakakou, P., el-Deiry, W. S., et al. (1997). Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Research, 57(1), 130–135.

    PubMed  CAS  Google Scholar 

  • Boekelheide, K., Arcila, M. E., & Eveleth, J. (1992). Cis-diamminedichloroplatinum (II) (cisplatin) alters microtubule assembly dynamics. Toxicology & Applied Pharmacology, 116(1), 146–151.

    Article  CAS  Google Scholar 

  • Burke, W. J., Raghu, G., & Strong, R. (1994). Taxol protects against calcium-mediated death of differentiated rat pheochromocytoma cells. Life Sciences, 55(16), 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Busciglio, J., Lorenzo, A., Yeh, J., & Yankner, B. A. (1995). Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron, 14(4), 879–888.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland, D. W., Mao, Y., & Sullivan, K. F. (2003). Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell, 112(4), 407–421.

    Article  PubMed  CAS  Google Scholar 

  • Colvin, O. M. (1999). An overview of cyclophosphamide development and clinical applications. Current Pharmaceutical Design, 5(8), 555–560.

    PubMed  CAS  Google Scholar 

  • Eisenhauer, E. A., & Vermorken, J. B. (1998). The taxoids. Comparative clinical pharmacology and therapeutic potential. Drugs, 55(1), 5–30.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, K., & Mattson, M. P. (1995). Taxol stabilizes [Ca2+]i and protects hippocampal neurons against excitotoxicity. Brain Research, 689(1), 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, K., Wang, Y., Yao, P. J., et al. (2003). Alteration in calcium channel properties is responsible for the neurotoxic action of a familial frontotemporal dementia tau mutation. Journal of Neurochemistry, 87(2), 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Gorbsky, G. J. (2001). The mitotic spindle checkpoint. Current Biology, 11(24), R1001–R1004.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, T., Hong, M., Zhang, B., et al. (1999). Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron, 24(3), 751–762.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, T., Zhang, B., Higuchi, M., Yoshiyama, Y., Trojanowski, J. Q., & Lee, V. M. (2001). Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. American Journal of Pathology, 158(2), 555–562.

    PubMed  CAS  Google Scholar 

  • Jordan, M. A. (2002). Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Current Medicinal Chemistry Anti-Cancer Agents, 2(1), 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, M. A., Toso, R. J., Thrower, D., & Wilson, L. (1993). Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proceedings of the National Academy of Sciences of the United States of America, 90(20), 9552–9556.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, M. A., & Wilson, L. (1998). Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Current Opinion in Cell Biology, 10(1), 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253–265.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, K., Habermann, B., & Hyman, A. A. (2002). XMAP215: a key component of the dynamic microtubule cytoskeleton. Trends in Cell Biology, 12(6), 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Li, G., Faibushevich, A., Turunen, B. J., et al. (2003). Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons. Journal of Neurochemistry, 84(2), 347–362.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F., Li, B., Tung, E. J., Grundke-Iqbal, I., Iqbal, K., & Gong, C. X. (2007). Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. European Journal of Neuroscience, 26(12), 3429–3436.

    Article  PubMed  Google Scholar 

  • Ludeman, S. M. (1999). The chemistry of the metabolites of cyclophosphamide. Current Pharmaceutical Design, 5(8), 627–643.

    PubMed  CAS  Google Scholar 

  • Michaelis, M. L., Ansar, S., Chen, Y., et al. (2005). {beta}-Amyloid-induced neurodegeneration and protection by structurally diverse microtubule-stabilizing agents. Journal of Pharmacology and Experimental Therapeutics, 312(2), 659–668.

    Article  PubMed  CAS  Google Scholar 

  • Mollinedo, F., & Gajate, C. (2003). Microtubules, microtubule-interfering agents and apoptosis. Apoptosis, 8(5), 413–450.

    Article  PubMed  CAS  Google Scholar 

  • Sponne, I., Fifre, A., Drouet, B., et al. (2003). Apoptotic neuronal cell death induced by the non-fibrillar amyloid-beta peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. Journal of Biological Chemistry, 278(5), 3437–3445.

    Article  PubMed  CAS  Google Scholar 

  • Trushina, E., Heldebrant, M. P., Perez-Terzic, C. M., et al. (2003). Microtubule destabilization and nuclear entry are sequential steps leading to toxicity in Huntington’s disease. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12171–12176.

    Article  PubMed  CAS  Google Scholar 

  • Tulub, A. A., & Stefanov, V. E. (2001). Cisplatin stops tubulin assembly into microtubules. A new insight into the mechanism of antitumor activity of platinum complexes. International Journal of Biological Macromolecules, 28(3), 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T. H., Wang, H. S., Ichijo, H., et al. (1998). Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. Journal of Biological Chemistry, 273(9), 4928–4936.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, B. A., & Cleveland, D. W. (2005). Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8(1), 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, B., Maiti, A., Shively, S., et al. (2005). Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proceedings of the National Academy of Sciences of the United States of America, 102(1), 227–231.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Phosphoramide mustard was a gift from the Drug Synthesis and Chemistry Branch, Division of Cancer Treatment, National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concepcion Conejero-Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conejero-Goldberg, C., Townsend, K. & Davies, P. Effects of Cell Cycle Inhibitors on Tau Phosphorylation in N2aTau3R Cells. J Mol Neurosci 35, 143–150 (2008). https://doi.org/10.1007/s12031-008-9044-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9044-z

Keywords

Navigation