Skip to main content
Log in

Ethanol-induced Changes in Proenkephalin mRNA Expression in the Rat Nigrostriatal Pathway

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Endogenous opioid systems have been suggested to play a key role in ethanol reinforcement mechanisms and alcohol-drinking behavior. Ethanol induces differential alterations in opioid peptide expression in brain areas of the reward circuits, which may be linked to the reinforcing effects of ethanol. In addition, ethanol-induced alterations in opioidergic nigrostriatal transmission could be involved in brain sensitivity to ethanol and play a role in addictive processes. The aim of this work was to study the effects of acute ethanol administration on proenkephalin (proenk) mRNA expression in the rat substantia nigra and caudate–putamen (CP) for up to 24 h post treatment. Male Wistar rats received ethanol (2.5 g/kg) or distilled water by intragastric administration, and proenk mRNA expression was studied by in situ hybridization and densitometry. Ethanol transiently increased proenk mRNA expression in the CP 1 h after drug administration. Proenk mRNA levels remained elevated 2 h post treatment in the anterior–medial and medial–posterior regions of the CP. In contrast, ethanol decreased proenk mRNA expression in the substantia nigra pars compacta and pars reticulata 2 h after drug exposure. Alterations in enkephalin expression in the substantia nigra and CP in response to ethanol exposure could be involved in the mechanisms underlying brain sensitivity to the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Asyyed, A., Storm, D., & Diamond, I. (2006). Ethanol activates cAMP response element-mediated gene expression in select regions of the mouse brain. Brain Research, 1106, 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Budygin, E. A., Mathews, T. A., Lapa, G. B., & Jones, S. R. (2005). Local effects of acute ethanol on dopamine neurotransmission in the ventral striatum in C57BL/6 mice. European Journal of Pharmacology, 523, 40–45.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Engel, J., & Svensson, T. H. (1972). Inhibition of ethanol induced excitation in mice and rats by alpha-methyl-p-tyrosine. Psychopharmacologia, 26, 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Chang, G. Q., Karatayev, O., Ahsan, R., Avena, N. M., Lee, C., Lewis, M. J., et al. (2007). Effect of ethanol on hypothalamic opioid peptides, enkephalin, and dynorphin: Relationship with circulating triglycerides. Alcoholism Clinical and Experimental Research, 31, 249–259.

    Article  CAS  Google Scholar 

  • Chang, S. L., Patel, N. A., Romero, A. A., & Kening, V. (1994). Ethanol induces FOS immunoreactivity in the rat brain. Regulatory Peptides, 54, 51–52.

    Article  CAS  Google Scholar 

  • Crabbe, J. C., Feller, D. J., Terdal, E. S., & Merrill, C. D. (1990). Genetic components of ethanol responses. Alcohol, 7, 245–248.

    Article  PubMed  CAS  Google Scholar 

  • de Gortari, P., Méndez, M., Rodríguez-Keller, I., Pérez-Martínez, L., & Joseph-Bravo, P. (2000). Acute ethanol administration induces changes in TRH and proenkephalin expression in hypothalamic and limbic regions of rat brain. Neurochemistry International, 37, 483–496.

    Article  PubMed  Google Scholar 

  • Di Chiara, G., & Imperato, A. (1985). Ethanol preferentially stimulates dopamine release in the nucleus accumbens of freely moving rats. European Journal of Pharmacology, 115, 131–132.

    Article  PubMed  Google Scholar 

  • Duncan, P. M., & Baez, A. M. (1981). The effect of ethanol on wheel running in rats. Pharmacology Biochemistry and Behavior, 15, 819–821.

    Article  CAS  Google Scholar 

  • Earleywine, M. (1994). Anticipated biphasic effects of ethanol’s psychomotor stimulant effect. Alcoholism Clinical and Experimental Research, 18, 956–963.

    Article  Google Scholar 

  • Erwin, V. G., Korte, A., & Marty, M. (1987). Neurotensin selectively alters ethanol-induced anesthesia in LS/Ibg and SS/Ibg lines of mice. Brain Research, 400, 80–90.

    Article  PubMed  CAS  Google Scholar 

  • Fadda, F., Argiolas, A., Melis, M. R., Serra, G., & Gessa, G. L. (1980). Differential effects of acute and chronic ethanol on dopamine metabolism in frontal cortex, caudate nucleus and substantia nigra. Life Sciences, 27, 979–986.

    Article  PubMed  CAS  Google Scholar 

  • Froehlich, J. C. (1995). Genetic factors in alcohol self-administration. Journal of Clinical Psychiatry, 56(Suppl 7), 15–23.

    PubMed  Google Scholar 

  • Froehlich, J. C., Harts, J., Lumeng, L., & Li, T.-K. (1987). Naloxone attenuation of voluntary alcohol consumption. Alcohol and Alcoholism. Supplement, 1, 333–337.

    PubMed  CAS  Google Scholar 

  • Froehlich, J. C., & Wand, G. (1996). The neurobiology of ethanol/opioid interactions in ethanol reinforcement. Alcoholism Clinical and Experimental Research, 20, 181–186.

    Article  Google Scholar 

  • Froehlich, J. C., Zweifel, M., Harts, J., Lumeng, L., & Li, T. -K. (1991). Importance of delta opioid receptors in maintaining high alcohol drinking. Psychopharmacology, 103, 467–472.

    Article  PubMed  CAS  Google Scholar 

  • Gianoulakis, C., Krishnan, B., & Thavundayil, J. (1996). Enhanced sensitivity of pituitary beta-endorphin to ethanol in subjects at high risk of alcoholism. Archives of General Psychiatry, 53, 250–257.

    PubMed  CAS  Google Scholar 

  • Gingras, M. A., & Cools, A. R. (1996). Analysis of the biphasic locomotor response to ethanol in high and low responders to novelty: A study in Nijmegen wistar rats. Psychopharmacology, 125, 258–264.

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Vázquez, F., & Méndez, M. (2006). Stimulant and depressant behavioral actions of alcohol in non-selected Wistar rats. In F. J. Chen (Ed.), New trends in brain research (pp. 127–142). New York: Nova Science Publishers, Inc.

    Google Scholar 

  • Howells, R. D., Kilpatrick, D. L., Bhatt, R., Monahan, J. J., Poonian, M., & Undenfriend, S. (1984). Molecular cloning and sequence determination of rat preproenkephalin cDNA: Sensitive probe for studying transcriptional changes in rat tissues. Proceedings of the National Academy of Sciences of the United States of America, 81, 7651–7655.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, S., Konradi, C., Kobierski, L., Cole, R., Senatus, P., & Green, D. (1990). Pharmacologic regulation of striatal proenkephalin gene expression via transcription factor CREB. Molecular Neurobiology, 20, 155–171.

    Google Scholar 

  • Hyytiä, P., & Kiianmaa, K. (2001). Suppression of ethanol responding by centrally administered CTOP and naltrindole in AA and Wistar rats. Alcoholism Clinical and Experimental Research, 25, 25–33.

    Article  Google Scholar 

  • Iwatsubo, K., & Clouet, D. H. (1977). Effects of morphine and haloperidol on electrical activity of rat nigro-striatal neurones. Journal of Pharmacology and Experimental Therapeutics, 222, 182–189.

    Google Scholar 

  • Jamensky, N. T., & Gianoulakis, C. (1999). Comparison of the proopiomelanocortin and proenkephalin opioid peptide systems in brain regions of the alcohol-preferring C57BL/6 and alcohol-avoiding DBA/2 mice. Alcohol, 18, 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Koob, G. F., Sanna, P. P., & Bloom, F. E. (1998). Neuroscience of addiction. Neuron, 21, 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan-Sarin, S., Jing, S. L., Kurtz, D. L., Zweifel, M., Portoghese, P. S., Li, T. -K., et al. (1995). The delta opioid receptor antagonist naltrindole attenuates both alcohol and saccharin intake in rats selectively bred for alcohol preference. Psychopharmacology, 120, 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan-Sarin, S., Wand, G. S., Li, X. -W., Li, T. -K., Portoghese, P. S., & Froehlich, J. C. (1998). Effect of mu opioid receptor blockade on alcohol intake in rats bred for high alcohol drinking. Pharmacology Biochemistry and Behavior, 59, 627–635.

    Article  CAS  Google Scholar 

  • Li, X.-W., Li, T. -K., & Froehlich, J. C. (1992). The enkephalinergic system and alcohol preference. Alcoholism Clinical and Experimental Research, 16, 359.

    Google Scholar 

  • Marinelli, P. W., Bai, L., Quirion, R., & Gianoulakis, C. (2005). A microdialysis profile of Met-enkephalin release in the rat nucleus accumbens following alcohol administration. Alcoholism Clinical and Experimental Research, 29, 1821–1828.

    Article  CAS  Google Scholar 

  • Marinelli, P. W., Kiianmaa, K., & Gianoulakis, C. (2000). Opioid propeptide mRNA content and receptor density in the brains of AA and ANA rats. Life Sciences, 66, 1915–1927.

    Article  PubMed  CAS  Google Scholar 

  • Marinelli, P. W., Quirion, R., & Gianoulakis, C. (2003). A microdialysis profile of b-endorphin and catecholamines in the rat nucleus accumbens following alcohol administration. Psychopharmacology, 169, 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Martin, C. S., Earleywine, M., Musty, R. E., Perrine, M. W., & Swift, R. M. (1993). Development and validation of the biphasic alcohol effects scale. Alcoholism Clinical and Experimental Research, 17, 140–146.

    Article  CAS  Google Scholar 

  • Méndez, M., Leriche, M., & Calva, J. C. (2001). Acute ethanol administration differentially modulates μ opioid receptors in the rat meso-accumbens and mesocortical pathways. Molecular Brain Research, 94, 148–156.

    Article  PubMed  Google Scholar 

  • Méndez, M., Leriche, M., & Calva, J. C. (2003). Acute ethanol administration transiently decreases [3H]-DAMGO binding to mu opioid receptors in the rat substantia nigra pars reticulata but not in the caudate–putamen. Neuroscience Research, 47, 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Méndez, M., & Morales-Mulia, M. (2006). Ethanol exposure differentially alters pro-enkephalin mRNA expression in regions of the mesocorticolimbic system. Psychopharmacology, 189, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Méndez, M., Morales-Mulia, M., & Leriche, M. (2004). [3H]DPDPE binding to δ opioid receptors in the rat mesocorticolimbic and nigrostriatal pathways is transiently increased by acute ethanol administration. Brain Research, 1028, 180–190.

    Article  PubMed  CAS  Google Scholar 

  • Mereu, G., Fadda, F., & Gessa, G. L. (1984). Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Research, 292, 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Ng, G. Y. K., O’Dowd, B. F., & George, S. R. (1996). Genotypic differences in mesolimbic enkephalin gene expression in DBA/2J and C57BL/6J inbred mice. European Journal of Pharmacology, 311, 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Nylander, I., Hyytiä, P., Forsander, O., & Terenius, L. (1994). Differences between alcohol-preferring (AA) and alcohol-avoiding (ANA) rats in the prodynorphin and proenkephalin systems. Alcoholism Clinical and Experimental Research, 18, 1272–1279.

    Article  CAS  Google Scholar 

  • Oliva, J. M., Ortiz, S., Pérez-Rial, S., & Manzanares, J. (2007). Time dependent alterations on tyrosine hydroxylase, opioid and cannabinoid CB1 receptor gene expressions after acute ethanol administration in the rat brain. European Neuropsychopharmacology, in press. DOI 10.1016/j.euroneuro.2007.09.001.

  • Olive, M. F., Koenig, H. N., Nannini, M. A., & Hodge, C. W. (2001). Stimulation of endorphin neurotransmission in the nucleus accumbens by ethanol, cocaine, and amphetamine. Journal of Neuroscience, 21, RC184 (1–5).

    Google Scholar 

  • Ortiz, J., Fitzgerald, L. W., Charlton, M., Lane, S., Trevisan, L., Guitart, X., et al. (1995). Biochemical actions of chronic ethanol exposure in the mesolimbic system. Synapse, 21, 289–298.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates (4th ed.). San Diego: Academic Press.

    Google Scholar 

  • Pittius, C. W., Kley, N., Loeffler, J. P., & Höllt, V. (1985). Quantitation of proenkephalin A messenger RNA in bovine brain, pituitary and adrenal medulla: Correlation between mRNA and peptide levels. EMBO Journal, 4, 1257–1260.

    PubMed  CAS  Google Scholar 

  • Rasmussen, D. D., Bryant, C. A., Boldt, B. M., Colasurdo, E. A., Levin, N., & Wilkinson, C. W. (1998). Acute alcohol effects on opiomelanocortinergic regulation. Alcoholism Clinical and Experimental Research, 22, 789–801.

    CAS  Google Scholar 

  • Reid, L. D., & Hunter, G. A. (1984). Morphine and naloxone modulate intake of ethanol. Alcohol, 1, 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D. L., Volz, T. J., Schenk, J. O., & Wightman, R. M. (2005). Acute ethanol decreases dopamine transporter velocity in rat striatum: In vivo and in vitro electrochemical measurements. Alcoholism Clinical and Experimental Research, 29, 746–755.

    Article  CAS  Google Scholar 

  • Schuckit, M. A. (1994). Low level of response to alcohol as a predictor of future alcoholism. American Journal of Psychiatry, 151, 184–189.

    PubMed  CAS  Google Scholar 

  • Schulz, R., Wüster, M., Duka, T., & Herz, A. (1980). Acute and chronic ethanol treatment changes endorphin levels in brain and pituitary. Psychopharmacology, 68, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Seizinger, B. R., Bovermann, K., Maysinger, D., Holt, V., & Herz, A. (1983). Differential effects of acute and chronic ethanol treatment on particular opioid systems in discrete regions of rat brain and pituitary. Pharmacology Biochemistry and Behavior, 18, 361–369.

    Article  CAS  Google Scholar 

  • Sommer, W., Hyytïa, P., & Kiianmaa, K. (2006). The alcohol-preferring AA and alcohol-avoiding ANA rats: Neurobiology of the regulation of alcohol drinking. Addiction Biology, 11, 289–309.

    Article  PubMed  Google Scholar 

  • Stuart, J. F., Dorow, J., & Feller, D. J. (1993). μ-opiate receptor binding and function in HOT and COLD selected lines of mice. Pharmacology Biochemistry and Behavior, 46, 519–526.

    Article  CAS  Google Scholar 

  • Thibault, C., Lai, C., Wilke, N., Duong, B., Olive, M. F., Rahman, S., et al. (2000). Expression profiling of neural cells reveals specific patterns of ethanol-responsive gene expression. Molecular Pharmacology, 58, 1593–1600.

    PubMed  CAS  Google Scholar 

  • Thiriet, N., Aunis, D., & Zwiller, J. (2000). C-fos and egr-1 immediate-early gene induction by cocaine and cocaethylene in rat brain. Annals of New York Academy of Sciences, 914, 46–57.

    Article  CAS  Google Scholar 

  • Ulm, R. R., Volpicelli, J. R., & Volpicelli, L. A. (1995). Opiates and alcohol self-administration in animals. Journal of Clinical Psychiatry, 56(Suppl 7), 5–14.

    PubMed  Google Scholar 

  • Valles, S., Pitarch, J., Renau-Piqueras, J., & Guerri, C. (1997). Ethanol exposure affects glial fibrillary acidic protein gene expression and transcription during rat brain development. Journal of Neurochemistry, 69, 2484–2493.

    Article  PubMed  CAS  Google Scholar 

  • Volpicelli, J. R., Ulm, R. R., & Hopson, N. (1991). Alcohol drinking in rats during and following morphine injections. Alcohol, 8, 289–292.

    Article  PubMed  CAS  Google Scholar 

  • Walton, K. M., & Rehfuss, R. P. (1990). Molecular mechanisms of cAMP-regulated gene expression. Molecular Neurobiology, 4, 197–210.

    Article  Google Scholar 

  • Widdowson, P. S. (1987). The effect of neurotensin, TRH and the δ-opioid receptor antagonist ICI174864 on alcohol-induced narcosis in rats. Brain Research, 424, 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Widdowson, P. S., & Holman, R. B. (1992). Ethanol-induced increase in endogenous dopamine release may involve endogenous opiates. Journal of Neurochemistry, 59, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Wild, K. D., & Reid, L. D. (1990). Modulation of ethanol intake by morphine: Evidence for a central site of action. Life Sciences, 47, PL49–PL54.

    Article  PubMed  CAS  Google Scholar 

  • Wise, R. A., & Bozarth, M. A. (1982). Action of drugs of abuse on brain reward systems: An update with specific attention to opiates. Pharmacology Biochemistry and Behavior, 17, 239–243.

    Article  CAS  Google Scholar 

  • Yanai, J., Bergman, A., Keltz, M., & Pick, C. G. (1988). Mechanisms of sensitivity and tolerance to ethanol and barbiturates. In J. Yanai, J. M. Rosenfeld, P. Eldar, & R. Bauml (Eds.), Alcohol dependence, the family and the community (pp. 143–158). London: Freund.

    Google Scholar 

  • Yanai, J., Shaanani, R., & Pick, C. G. (1995). Altered brain sensitivity to ethanol in mice after MPTP treatment. Alcohol, 12, 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X., Horn, K., & Wand, G. S. (1998). Chronic ethanol exposure impairs phosphorylation of CREB and CRE-binding activity in rat striatum. Alcoholism Clinical and Experimental Research, 22, 382–390.

    CAS  Google Scholar 

  • Yoshikawa, K., Williams, C., & Sabol, S. L. (1984). Rat brain preproenkephalin mRNA. cDNA cloning, primary structure, and distribution in the central nervous system. Journal of Biological Chemistry, 259, 14301–14308.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank S.R. Mejía for the technical assistance. This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT 34359-N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milagros Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Méndez, M., Morales-Mulia, M. & Pérez-Luna, J.M. Ethanol-induced Changes in Proenkephalin mRNA Expression in the Rat Nigrostriatal Pathway. J Mol Neurosci 34, 225–234 (2008). https://doi.org/10.1007/s12031-008-9039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9039-9

Keywords

Navigation