Skip to main content
Log in

Differential Regulation of the Renin-Angiotensin System by Nicotine in WKY and SHR Glia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Given that (1) the renin-angiotensin system (RAS) is compartmentalized within the central nervous system in neurons and glia (2) the major source of brain angiotensinogen is the glial cells, (3) the importance of RAS in the central control of blood pressure, and (4) nicotine increases the probability of development of hypertension associated to genetic predisposition; the objective of the present study was to evaluate the effects of nicotine on the RAS in cultured glial cells from the brainstem and hypothalamus of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Ligand binding, real-time PCR and western blotting assays were used to compare the expression of angiotensinogen, angiotensin converting enzyme, angiotensin converting enzyme 2 and angiotensin II type1 receptors. We demonstrate, for the first time, that there are significant differences in the basal levels of RAS components between WKY and SHR rats in glia from 1-day-old rats. We also observed that nicotine is able to modulate the renin-angiotensin system in glial cells from the brainstem and hypothalamus and that the SHR responses were more pronounced than WKY ones. The present data suggest that nicotine effects on the RAS might collaborate to the development of neurogenic hypertension in SHR through modulation of glial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Amenta, F., Di Tullio, M. A., & Tomassoni, D. (2003). Arterial hypertension and brain damage–evidence from animal models (review). Clinical and Experimental Hypertension, 25, 359–380.

    Article  PubMed  Google Scholar 

  • Bains, J. S., Potyok, A., & Ferguson, A. V. (1992). Angiotensin II actions in paraventricular nucleus: functional evidence for neurotransmitter role in efferents originating in subfornical organ. Brain Research, 599, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Britto, R. R., Santos, R. A., Fagundes-Moura, C. R., Khosla, M. C., & Campagnole-Santos, M. J. (1997). Role of angiotensin-(1–7) in the modulation of the baroreflex in renovascular hypertensive rats. Hypertension, 30, 549–556.

    PubMed  CAS  Google Scholar 

  • Buccafusco, J. J., & Magri, V. (1990). The pressor response to spinal cholinergic stimulation in spontaneously hypertensive rats. Brain Research Bulletin, 25, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Buccafusco, J. J., & Yang, X. (1993). Mechanism of the hypertensive response to central injection of nicotine in conscious rats. Brain Research Bulletin, 32, 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Bui, L. M., Keen, C. L., & Dubick, M. A. (1994). Influence of 12-week nicotine treatment and dietary copper on blood pressure and indices of the antioxidant system in male spontaneous hypertensive rats. Biological Trace Element Research, 46, 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, T. H., Bergamaschi, C. T., Lopes, O. U., & Campos, R. R. (2003). Role of endogenous angiotensin II on glutamatergic actions in the rostral ventrolateral medulla in Goldblatt hypertensive rats. Hypertension, 42, 707–712.

    Article  PubMed  CAS  Google Scholar 

  • Casto, R., & Phillips, M. I. (1984). Cardiovascular actions of microinjections of angiotensin II in the brain stem of rats. American Journal of Physiology, 246, R811–816.

    PubMed  CAS  Google Scholar 

  • Chan, R. K., Chan, Y. S., & Wong, T. M. (1991). Responses of cardiovascular neurons in the rostral ventrolateral medulla of the normotensive Wistar Kyoto and spontaneously hypertensive rats to iontophoretic application of angiotensin II. Brain Research, 556, 145–150.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, D. W., Boyd Jr., F. T., Kappy, M. S., & Raizada, M. K. (1984). Insulin binds to specific receptors and stimulates 2-deoxy-D-glucose uptake in cultured glial cells from rat brain. Journal of Biological Chemistry, 259, 11672–11675.

    PubMed  CAS  Google Scholar 

  • Dajas-Bailador, F., & Wonnacott, S. (2004). Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends in Pharmacological Sciences, 25, 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Dampney, R. A., Hirooka, Y., Potts, P. D., & Head, G. A. (1996). Functions of angiotensin peptides in the rostral ventrolateral medulla. Clinical and Experimental Pharmacology & Physiology. Supplement, 3, S105–S111.

    CAS  Google Scholar 

  • DiNicolantonio, R., Hutchinson, J. S., & Mendelsohn, F. A. (1982). Exaggerated salt appetite of spontaneously hypertensive rats is decreased by central angiotensin-converting enzyme blockade. Nature, 298, 846–848.

    Article  PubMed  CAS  Google Scholar 

  • Dzau, V. J. (1989). Short- and long-term determinants of cardiovascular function and therapy: contributions of circulating and tissue renin-angiotensin systems. Journal of Cardiovascular Pharmacology, 14(Suppl 4), S1–S5.

    Article  PubMed  CAS  Google Scholar 

  • Epperson, C. N., O’Malley, S., Czarkowski, K. A., Gueorguieva, P., Jatlow, G., Sanacora, D., et al. (2005). Sex, GABA, and nicotine: the impact of smoking on cortical GABA levels across the menstrual cycle as measured with proton magnetic resonance spectroscopy. Biological Psychiatry, 57, 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, M. F., & Fior-Chadi, D. R. (2007). Chronic nicotine administration Analysis of the development of hypertension and glutamatergic neurotransmission. Brain Research Bulletin, 72, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, R., Le Novere, N., Picciotto, M. R., Changeux, J. P., & Zoli, M. (2002). Acute and long-term changes in the mesolimbic dopamine pathway after systemic or local single nicotine injections. European Journal of Neuroscience, 15, 1810–1818.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira, A. J., & Santos, R. A. (2005). Cardiovascular actions of angiotensin-(1–7). Brazilian Journal of Medical and Biological Research, 38, 499–507.

    PubMed  CAS  Google Scholar 

  • Fishman, M. C., Zimmerman, E. A., & Slater, E. E. (1981). Renin and angiotensin: the complete system within the neuroblastoma x glioma cell. Science, 214, 921–923.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, M. E., Ziff, E. B., & Greene, L. A. (1986). Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science, 234, 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Grilli, M., Parodi, M., Raiteri, M., & Marchi, M. (2005). Chronic nicotine differentially affects the function of nicotinic receptor subtypes regulating neurotransmitter release. Journal of Neurochemistry, 93, 1353–1360.

    Article  PubMed  CAS  Google Scholar 

  • Gyurko, R., Wielbo, D., & Phillips, M. I. (1993). Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regulatory Peptide, 49, 167–174.

    Article  CAS  Google Scholar 

  • Hall, J. E., Mizelle, H. L., & Woods, L. L. (1986). The renin-angiotensin system and long-term regulation of arterial pressure. Journal of Hypertension, 4, 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Hermann, K., Raizada, M. K., Sumners, C., & Phillips, M. I. (1987). Presence of renin in primary neuronal and glial cells from rat brain. Brain Research, 437, 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Ito, S., Komatsu, K., Tsukamoto, K., Kanmatsuse, K., & Sved, A. F. (2002). Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats. Hypertension, 40, 552–559.

    Article  PubMed  CAS  Google Scholar 

  • Khan, I. M., Printz, M. P., Yaksh, T. L., & Taylor, P. (1994). Augmented responses to intrathecal nicotinic agonists in spontaneous hypertension. Hypertension, 24, 611–619.

    PubMed  CAS  Google Scholar 

  • Kohara, K., Brosnihan, K. B., & Ferrario, C. M. (1993). Angiotensin(1–7) in the spontaneously hypertensive rat. Peptides, 14, 883–891.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., & Misu, Y. (1981). Cardiovascular responses to intracisternal administration of nicotine in rats. Canadian Journal of Physiology and Pharmacology, 59, 615–617.

    PubMed  CAS  Google Scholar 

  • Lakier, J. B. (1992). Smoking and cardiovascular disease. American Journal of Medicine, 93, 8S–12S.

    Article  PubMed  CAS  Google Scholar 

  • Lassegue, B., Alexander, R. W., Nickenig, G., Clark, M., Murphy, T. J., & Griendling, K. K. (1995). Angiotensin II down-regulates the vascular smooth muscle AT1 receptor by transcriptional and post-transcriptional mechanisms: evidence for homologous and heterologous regulation. Molecular Pharmacology, 48, 601–609.

    PubMed  CAS  Google Scholar 

  • Lavoie, J. L., Cassell, M. D., Gross, K. W., & Sigmund, C. D. (2004). Localization of renin expressing cells in the brain, by use of a REN-eGFP transgenic model. Physiological Genomics, 16, 240–246.

    Article  PubMed  CAS  Google Scholar 

  • Li, M. D., Kane, J. K., Parker, S. L., McAllen, K., Matta, S. G., & Sharp, B. M. (2000). Nicotine administration enhances NPY expression in the rat hypothalamus. Brain Research, 867, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Li, S. P., Park, M. S., Kim, J. H., & Kim, M. O. (2004). Chronic nicotine and smoke treatment modulate dopaminergic activities in ventral tegmental area and nucleus accumbens and the gamma-aminobutyric acid type B receptor expression of the rat prefrontal cortex. Journal of Neuroscience Research, 78, 868–879.

    Article  PubMed  CAS  Google Scholar 

  • Lu, D., Yang, H., Lenox, R. H., & Raizada, M. K. (1998). Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons. Journal of Cell Biology, 142, 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Matta, S. G., Valentine, J. D., & Sharp, B. M. (1997). Nicotine activates NPY and catecholaminergic neurons in brainstem regions involved in ACTH secretion. Brain Research, 759, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • McKinley, M. J., Albiston, A. L., Allen, A. M., Mathai, M. L., May, C. N., McAllen, R. M., et al. (2003). The brain renin-angiotensin system: location and physiological roles. International Journal of Biochemistry & Cell Biology, 35, 901–918.

    Article  CAS  Google Scholar 

  • Michelini, L. C., & Bonagamba, L. G. (1990). Angiotensin II as a modulator of baroreceptor reflexes in the brainstem of conscious rats. Hypertension, 15, I45–I50.

    PubMed  CAS  Google Scholar 

  • Mitchell, S. N., Smith, K. M., Joseph, M. H., & Gray, J. A. (1993). Increases in tyrosine hydroxylase messenger RNA in the locus coeruleus after a single dose of nicotine are followed by time-dependent increases in enzyme activity and noradrenaline release. Neuroscience, 56, 989–997.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, S., Cassell, M. D., & Sigmund, C. D. (2002). Glia- and neuron-specific expression of the renin-angiotensin system in brain alters blood pressure, water intake, and salt preference. Journal of Biological Chemistry, 277, 33235–33241.

    Article  PubMed  CAS  Google Scholar 

  • Neff, R. A., Humphrey, J., Mihalevich, M., & Mendelowitz, D. (1998). Nicotine enhances presynaptic and postsynaptic glutamatergic neurotransmission to activate cardiac parasympathetic neurons. Circulation Research, 83, 1241–1247.

    PubMed  CAS  Google Scholar 

  • Oliff, H. S., & Gallardo, K. A. (1999). The effect of nicotine on developing brain catecholamine systems. Frontiers in Bioscience, 4, D883–D897.

    Article  PubMed  CAS  Google Scholar 

  • Pausova, Z., Paus, T., Sedova, L., & Berube, J. (2003). Prenatal exposure to nicotine modifies kidney weight and blood pressure in genetically susceptible rats: a case of gene-environment interaction. Kidney International, 64, 829–835.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, Y. M., Paul, M., & Ganten, D. (1998). Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovascular Research, 39, 77–88.

    Article  PubMed  CAS  Google Scholar 

  • Pipe, A. (1996). Tobacco addiction and hypertension. Journal of Human Hypertension, 10(Suppl 2), S13–S16.

    PubMed  Google Scholar 

  • Quik, M. (2004). Smoking, nicotine and Parkinson’s disease. Trends in Neurosciences, 27, 561–568.

    Article  PubMed  CAS  Google Scholar 

  • Quitadamo, C., Fabbretti, E., Lamanauskas, N., & Nistri, A. (2005). Activation and desensitization of neuronal nicotinic receptors modulate glutamatergic transmission on neonatal rat hypoglossal motoneurons. European Journal of Neuroscience, 22, 2723–2734.

    Article  PubMed  Google Scholar 

  • Raizada, M. K., Phillips, M. I., Crews, F. T., & Sumners, C. (1987). Distinct angiotensin II receptor in primary cultures of glial cells from rat brain. Proceedings of the National Academy of Sciences of the United States of America, 84, 4655–4659.

    Article  PubMed  CAS  Google Scholar 

  • Rohleder, N., & Kirschbaum, C. (2006). The hypothalamic-pituitary-adrenal (HPA) axis in habitual smokers. International Journal of Psychophysiology, 59, 236–243.

    Article  PubMed  Google Scholar 

  • Ruiz, P., Basso, N., Cannata, M. A., & Taquini, A. C. (1990). The renin-angiotensin system in different stages of spontaneous hypertension in the rat (S H R). Clinical and Experimental Hypertension A, 12, 63–81.

    Article  CAS  Google Scholar 

  • Rydzewski, B., Zelezna, B., Tang, W., Sumners, C., & Raizada, M. K. (1992). Angiotensin II stimulation of plasminogen activator inhibitor-1 gene expression in astroglial cells from the brain. Endocrinology, 130, 1255–1262.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, K., Chapleau, M. W., Morimoto, S., Cassell, M. D., & Sigmund, C. D. (2004). Differential modulation of baroreflex control of heart rate by neuron- vs. glia-derived angiotensin II. Physiological Genomics, 20, 66–72.

    Article  PubMed  CAS  Google Scholar 

  • Salminen, O., Seppa, T., Gaddnas, H., & Ahtee, L. (1999). The effects of acute nicotine on the metabolism of dopamine and the expression of Fos protein in striatal and limbic brain areas of rats during chronic nicotine infusion and its withdrawal. Journal of Neuroscience, 19, 8145–8151.

    PubMed  CAS  Google Scholar 

  • Sapru, H. N. (1987). Control of blood pressure by muscarinic and nicotinic receptors in the ventrolateral medulla. In L. Davis (Ed.) Tobacco smoking and nicotine: A neurobiologic approach (pp. 287–300). New York, NY: Plenum Press.

    Google Scholar 

  • Schinke, M., Baltatu, O., Bohm, M., Peters, J., Rascher, W., Bricca, G., et al. (1999). Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proceedings of the National Academy of Sciences of the United States of America, 96, 3975–3980.

    Article  PubMed  CAS  Google Scholar 

  • Serova, L., & Sabban, E. L. (2002). Involvement of alpha 7 nicotinic acetylcholine receptors in gene expression of dopamine biosynthetic enzymes in rat brain. Journal Of Pharmacology And Experimental Therapeutics, 303, 896–903.

    Article  PubMed  CAS  Google Scholar 

  • Sherrod, M., Davis, D. R., Zhou, X., Cassell, M. D., & Sigmund, C. D. (2005). Glial-specific ablation of angiotensinogen lowers arterial pressure in renin and angiotensinogen transgenic mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289, R1763–R1769.

    PubMed  CAS  Google Scholar 

  • Stornetta, R. L., Hawelu-Johnson, C. L., Guyenet, P. G., & Lynch, K. R. (1988). Astrocytes synthesize angiotensinogen in brain. Science, 242, 1444–1446.

    Article  PubMed  CAS  Google Scholar 

  • Sun, B., Chen, X., Xu, L., Sterling, C., & Tank, A. W. (2004). Chronic nicotine treatment leads to induction of tyrosine hydroxylase in locus ceruleus neurons: the role of transcriptional activation. Molecular Pharmacology, 66, 1011–1021.

    Article  PubMed  CAS  Google Scholar 

  • Tallant, E. A., & Higson, J. T. (1997). Angiotensin II activates distinct signal transduction pathways in astrocytes isolated from neonatal rat brain. Glia, 19, 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Tigerstedt, R., & Bergman, P. (1898). Niere und Krieslauf Skand. Archives of Physiology, 8, 223–271.

    Google Scholar 

  • Toney, G. M., & Porter, J. P. (1993). Effects of blockade of AT1 and AT2 receptors in brain on the central angiotensin II pressor response in conscious spontaneously hypertensive rats. Neuropharmacology, 32, 581–589.

    Article  PubMed  CAS  Google Scholar 

  • Tseng, C. J., Appalsamy, M., Robertson, D., & Mosqueda-Garcia, R. (1993). Effects of nicotine on brain stem mechanisms of cardiovascular control. Journal of Pharmacology and Experimental Therapeutics, 265, 1511–1518.

    PubMed  CAS  Google Scholar 

  • Tseng, C. J., Ger, L. P., Lin, H. C., & Tung, C. S. (1994). The pressor effect of nicotine in the rostral ventrolateral medulla of rats. Chinese Journal of Physiology, 37, 83–87.

    PubMed  CAS  Google Scholar 

  • Valentine, J. D., Matta, S. G., & Sharp, B. M. (1996). Nicotine-induced cFos expression in the hypothalamic paraventricular nucleus is dependent on brainstem effects: correlations with cFos in catecholaminergic and noncatecholaminergic neurons in the nucleus tractus solitarius. Endocrinology, 137, 622–630.

    Article  PubMed  CAS  Google Scholar 

  • Weyhenmeyer, J. A., & Phillips, M. I. (1982). Angiotensin-like immunoreactivity in the brain of the spontaneously hypertensive rat. Hypertension, 4, 514–523.

    PubMed  CAS  Google Scholar 

  • Yang, H., Lu, D., & Raizada, M. K. (1997). Angiotensin II-induced phosphorylation of the AT1 receptor from rat brain neurons. Hypertension, 30, 351–357.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Shereeni Veraasigham for her helpful advices and Fan Lin for technical support. This study received grants from FAPESP (01/10472-0), CNPq and NIH. Merari FR Ferrari was recipient of fellowships from FAPESP (01/10471-3 and 06/00650-1) and CAPES (BEX0140/05-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merari F. R. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, M.F., Raizada, M.K. & Fior-Chadi, D.R. Differential Regulation of the Renin-Angiotensin System by Nicotine in WKY and SHR Glia. J Mol Neurosci 35, 151–160 (2008). https://doi.org/10.1007/s12031-007-9025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-9025-7

Keywords

Navigation